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ABSTRACT

Sequential stochastic simulation has been widely ac-
cepted as the only practical way of controlling statistical
errors of the final simulation results. Such simulation
evolves along a sequence of consecutive checkpoints at
which the accuracy of estimates, conveniently measured
by the relative statistical error (defined as the ratio of
the half-width of a given CI, at an assumed confidence
level, and the point estimate) is assessed.

Inherently random nature of output data collected
during stochastic simulation can cause an accidental,
temporal satisfaction of the stopping rule of such sequen-
tial estimation.

In this paper, having given an experimental evidence
of frequent occurrence of this phenomenon, and the re-
sulted significant degradation of the coverage of the final
results in such cases, we propose a simple heuristic rule
which helps to solve this problem. The effectiveness of
this rule of thumb is quantitatively assessed on the basis
of the results of coverage analysis of a few methods of
sequential output data analysis in the context of steady-
state simulation.

INTRODUCTION

Any stochastic discrete-event simulation has to be re-
garded as a (simulated) statistical experiment. Hence,
statistical analysis of simulation output is mandatory.
Otherwise, “.. computer runs yield a mass of data but
this mass may turn into a mess <if the random nature of

such output data is ignored, and then> ... instead of an
expensive simulation model, a toss of the coin had better
be used” (Kleijnen 1979).

Two different scenarios for determining the duration
of stochastic simulation exist. Traditionally, the length
of simulation experiment was set as an input to simu-
lation programs. In such a fized-sample-size scenario,
the final statistical error of the results is a matter of
luck. This is no longer an acceptable approach. Modern
simulation methodology offers an attractive alternative,
known as the sequential scenario of simulation or, simply,
sequential simulation. Today, the sequential scenario is
recognised as the only practical approach allowing con-
trol of the error of the final results of stochastic simula-
tion, since “.. no procedure in which the run length is
fized before the simulation begins can be relied upon to
produce a confidence interval that covers the true mean
with the desired probability level” (Law and Kelton 1982;
Law and Kelton 1991).

Statistical errors associated with the final results of
such simulation are commonly measured by the half-
widths of their confidence intervals (CI), at a given con-
fidence level. In any correctly implemented simulation,
the width of a CI will tend to shrink with the number of
collected simulation output data, i.e. with the duration
of simulation.

Sequential simulation follows a sequence of consecu-
tive checkpoints at which the accuracy of estimates, con-
veniently measured by the relative statistical error (de-
fined as the ratio of the half-width of a given CI, at an
assumed confidence level, and the point estimate) is as-
sessed. Thus, in the case of simulation during which,
for example, a mean value p is estimated, when n obser-
vations (or output data items) are available at a given
checkpoint and the estimate of x4 equals X (n), the rel-
ative statistical error of the estimate is measured by
e(n) = —)A?%L))—, where A(n) is the current half-width of
the confidence interval for u at (1 — a) confidence level;
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Figure 1: Run lengths for sequential NOBM (M/M/1/00, load = 0.9)

O0<a<l.

If the acceptable upper level of relative statistical er-
ror of the results equals €4z, then the simulation can
be stopped at a given checkpoint, iff €(n) < emaz. Oth-
erwise, the simulation has to be continued. Note, that,
to apply this criterion, a simulator does not even need to
know the order of magnitude of the estimated parame-
ter(s).

Inherently random nature of output data collected
during stochastic simulation can cause an accidental,
temporal satisfaction of the stopping rule of such sequen-
tial estimation.

An experimental evidence of this phenomenon, and
the resulted significant degradation of the coverage of the
final results, is documented in Section 2. In Section 3 we
propose a simple heuristic rule which offers a solution of
the problem. Its effectiveness is quantitatively assessed
on the basis of the results of coverage analysis of a few
methods of sequential output data analysis in the context
of steady-state simulation.

EXPERIMENTAL EVIDENCE

One problem faced in practical applications of sequential
stochastic simulation is that a stopping RULE based on
relative statistical error can be accidently satisfied too
early, giving very inaccurate estimates of the analysed
parameters. This happens due to random fluctuations in
the estimated relative error occurring during sequential
simulation; see for example (Pawlikowski and de Vere
1993).

This phenomenon of prematurely stopped simulation
runs can be documented experimentally using results of
our exhaustive studies of coverage of various methods of

output data analysis proposed for sequential steady-state
analysis, in which we followed the methodology proposed
in (Pawlikowski et al. 1998) and (Lee et al. 1999). In
this paper we restrict our discussion to three methods of
sequential mean value analysis: Non-overlapping Batch
Means (NOBM), Spectral Analysis in its version pro-
posed by Heidelberger and Welch (SA/HW), and Regen-
erative Cycles (RC), also known simply as regenerative
simulation. The theoretical bases of these three methods
of simulation output data analysis, as well sequential im-
plementations of two first methods, are given for example
in (Pawlikowski 1990). Our sequential implementation of
the RC method is described in (Lee 1999).

Since experimental investigation of consequences of
too short simulation runs requires that the exact values
of analysed parameters are known, we use results ob-
tained from steady-state simulation of the M/M/1/c0
queueing system. This queueing system is notorious for
strong (auto)correlations of data in output sequences and
long simulation runs required for achieving satisfacto-
rily low level of statistical errors, and, because of this,
it has been proposed as the reference model in research
on methods of simulation output data analysis (Schriber
and Andrews 1981).

All the results were obtained from 3,000 independent
replications of steady-state simulations of an M/M/1/oc0
queueing system, estimating the mean response time in
the system, with €4, - 100% = 10% as the upper level
of the acceptable relative error of the final results, at a
confidence level of 0.95.

Figures 1-3 show the recorded run-lengths of 3,000
simulation runs of an M/M/1/co queueing system at
a load of 0.9, and figures 4-6 depict the same data by
means of the corresponding histograms. The run-lengths
were measured by the number of collected observations.
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Figure 2: Run lengths for sequential RS (M/M/1/c0, load = 0.9)
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Figure 3: Run lengths for sequential SA (M/M/1 /00, load = 0.9)

Statistics describing the sets of recorded run-lengths are
presented in Tables 1-3. Following (Pawlikowski et al.
1998), we have classified a simulation as “too short” if
its run-length was shorter than the mean run-length by
more than one standard deviation. The overall mean
run-lengths and threshold values for sufficiently long sim-
ulations are given in the last two columns of the tables,
together with the number of replications classified as “too
short” (in the second column).

The quality of the results produced by “too short”
simulations can be assessed by their coverage, i.e. by the
experimental frequency with which the final confidence
intervals contain the true (estimated) value. In the ideal
situation, the coverage should be equal to the assumed
confidence level. The results of our analysis reveal that
the coverage of simulation results from “too short” runs
can be very poor indeed. While this should be of concern
in the case of all three methods considered, the coverage
of results associated with RC is really appallingly low;

see the third column in Table 2.

On the other hand, other results of our coverage
analysis of NOBM, SA and RC, obtained by applying
the principles of sequential coverage analysis formulated
in (Pawlikowski et al. 1998), show that all three methods
are able to offer the final results of similar (acceptable)
quality (in the sense of coverage) if the “too short” runs
are eliminated; see figure 7-9. A jump in the current
value of coverage, clearly seen in each of these figures is
associated with discarding of all results taken from “too
short” simulations. In all these cases, the lengths of sim-
ulation runs were classified using the “mean run-length
minus one standard deviation” threshold.

The results show how much wrong the results ob-
tained from too short simulation runs can be. The ques-
tion is how one can recognise that a given simulation has
lasted too short in practical applications of sequential
simulation.
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Table 1: Run-length statistics from 3,000 simulation replications: NOBM, M/M/1/c0,

theoretical confidence level = 0.95.

| Load | Num. of short runs | Coverage | Prob(short) | Threshold | Mean of lengths |

0.1 0 N/A N/A 8603 11897
0.2 0 N/A N/A 8504 11908
0.3 0 N/A N/A 8481 11998
0.4 0 N/A N/A 8484 12167
0.5 0 N/A N/A 8446 12403
0.6 0 N/A N/A 8410 13246
0.7 0 N/A N/A 8892 15539
0.8 154 42.2% 5.1% 12493 24942
0.9 331 36.3% 11.0% 43081 82083

PROPOSED SOLUTION

On the basis of the above reported results we propose
the following, simple rule of thumb which should help to
eliminate results obtained from too short simulation runs
in practical simulation studies. Namely, one should:

e execute R independent replications of a given se-
quential simulation and record its length (measured
by the size of the sample of simulation output data),

e accept the results produced by the longest simula-
tion only.

One can assess the probability of the error associated
with such a decision rule for a given R as equal P} _ .,
with Psport being the probability that a simulation run is
“too short”. This is the probability of all R replications
belonging to the class of “too short” simulations.

Our experimental data allow us to assume that a
“too short” simulation run can occur with the probability
Pypore = 0.18 or less (see table 2). Thus, the probability
of using the final results originated from still “too short”
simulation, when applying our rule of thumb for R = 2 is
not larger than 0.032. It becomes not larger than 0.006
for R = 3, and drops to 0.0002 if one repeats sequential
simulation R = 5 times.

A similar approach, although in a different context,
was proposed by D. Knuth in 1969, when he wrote that
“.. the most prudent policy for a person to follow is to
run each Monte Carlo program at least twice, using quite
different sources of pseudo-random numbers, before tak-
ing the answers of the program seriously. ”(Knuth 1969).

Such a rule of thumb could be easy implemented in
commercial simulation packages offering automated con-
trol of sequential simulation. These include, for exam-

ple, QNAP2*, Prophesy*™ and whole family of simula-
tion packages based on SIMSCRIPT IL5f. There exist
also such packages offered as free-ware for non-profit re-
search organisations. One of them is Akarca-2 (Ewing et
al. 1999), designed at the University of Canterbury, in
Christchurch, New Zealand.

CONCLUSIONS

No rule of thumb can ensure that the final confidence
interval from a sequential stochastic simulation will con-
tain the theoretical value with the probability equal to
the assumed confidence level. One of the ongoing prob-
lems of the research in the area of sequential steady-state
simulation is to find a method of simulation cutput data
analysis which would be valid (in the sense of coverage)
also when one applies it in simulation of highly dynamic
stochastic processes. All methods whose coverage has
been so far analysed evidently perform worse when they
are applied in simulation of heavier loaded queueing sys-
tems and networks; see for example (Pawlikowski et al.
1998). Nevertheless, lowering the probability of using re-
sults from too short simulation runs by applying such a
rule of thumb as the one formulated in this paper is one
of very few possible practical ways available for simula-
tion practitioners to improve the quality of results from
their simulation experiments.
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Table 2: Run-length statistics from 3,000 simulation replications: RS, M/M/1/oo,

theoretical confidence level = 0.95.

| Load | Num. of short runs | Coverage | Prob(short) | Threshold | Mean of lengths |
0.1 199 12.1% 6.6% 306 458
0.2 239 19.7% 8.0% 364 588
0.3 258 18.6% 8.6% 440 769
04 264 20.5% 8.8% 553 1021
0.5 307 21.5% 10.2% 735 1362
0.6 314 15.0% 10.5% 985 1891
0.7 330 15.2% 11.0% 1394 2836
0.8 379 5.3% 12.6% 1962 4568
0.9 539 5.6% 18.0% 3233 9378

Table 3: Run-length statistics from 3,000 simulation replications: SA, M/M/1/o0,

theoretical confidence level = 0.95.

| Load | Num. of short runs | Coverage | Prob(short) | Threshold | Mean of lengths |

0.1 0 N/A N/A 1341 1723
0.2 0 N/A N/A 1377 2002
0.3 133 83.6% 4.4% 1538 2475
0.4 500 80.2% 16.7% 1813 3278
0.5 297 69.7% 9.9% 2383 4670
0.6 364 63.7% 12.1% 3415 7247
0.7 307 53.1% 10.2% 5214 12727
0.8 236 46.2% 7.9% 9743 27906
0.9 263 38.0% 8.8% 33461 107049
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Figure 4: Histogram of run lengths for sequential
NOBM (M/M/1/00, load = 0.9)
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(M/M/1/00, load = 0.9)
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Figure 6: Histogram of run lengths for sequential SA

(M/M/1/00, load = 0.9)
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Figure T: Coverage for sequential NOBM
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Figure 8: Coverage for sequential RS (M/M/1/oo0,
load = 0.9)
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Figure 9: Coverage for sequential SA (M/M/1/c0,
load = 0.9)



