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Abstract. Recent traffic studies have shown that self-similar (or frac-
tal) processes may provide better models for teletraffic than Poisson pro-
cesses. If this is not taken into account, it can have serious effects on per-
formance evaluation of computer networks. Thus, an important require-
ment for conducting simulation studies of telecommunication networks
is the ability to generate synthetic stochastic self-similar sequences.
Three generators of pseudo-random self-similar sequences, based on the
FFT [Paxson, 1995], RMD [Lau et al., 1995] and SRA method [Jeong
et al., 1998], are compared in this paper. This study has indicated that (i)
the SRA method is faster than two other methods when long sequences
are generated; (ii) the SRA method produces more accurate self-similar
sequences (in the sense of Hurst parameter) than the RMD method.

Keywords: teletraffic generators, complexity, self-similar processes,
Hurst parameter

1 Introduction

The search for accurate mathematical models of data streams flowing in modern
data communication networks has attracted a considerable amount of interest in
the last few years. The reason is that several recent teletraffic studies of local area
networks: broadband-integrated services digital networks and wide area networks
[Likhanov et al., 1995], [Leland et al., 1994], [Paxson and Floyd, 1995], [Ryu,
1996]; the world wide web, especially when engaged in such sophisticated services
as variable-bit-rate (VBR) video transmission [Garrett and Willinger, 1994],
[Krunz and Makowski, 1997], [Rose, 1997], have shown that commonly used
teletraffic models, based on Poisson or related processes, are not able to capture
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the self-similar (or fractal) nature of teletraffic in real networks. The properties
of teletraffic in such scenarios are very different from both the properties of
conventional models of telephone traffic and the traditional models of data traffic
generated by computers.

The use of traditional models of teletraffic can result in overly optimistic es-
timates of performance of computer networks [Beran, 1992], [Paxson and Floyd,
1995], insufficient allocation of communication and data processing resources,
and difficulties in ensuring the quality of service expected by network users.
On the other hand, if the strongly correlated character of teletraffic is explicitly
taken into account, this can also lead to more efficient traffic control mechanisms.

Several methods for generating self-similar sequences have been proposed.
They include methods based on fast fractional Gaussian noise [Mandelbrot,
1971], fractional ARIMA processes [Hosking, 1984], the M/G/∞ queue model
[Krunz and Makowski, 1997], [Leland et al., 1994] and autoregressive processes
[Cario and Nelson, 1998], [Granger, 1980]. Most of them generate asymptoti-
cally self-similar sequences and require large amounts of CPU time. For example,
Hosking’s method [Hosking, 1984], based on the F-ARIMA(0, d, 0) process, needs
many hours to produce a self-similar sequence with 131,072 (217) numbers on
a Sun SPARCstation 4. It requires O(n2) computations to generate n numbers.
Even though exact methods of generation of self-similar sequences exist (for ex-
ample: [Mandelbrot, 1971]), they are only fast enough for short sequences. In
addition, they are often inappropriate when long sequences are generated be-
cause the whole sequences need to be generated in advance. To overcome this,
an approximate method of generating self-similar sequences is required for sim-
ulation studies of telecommunication networks.

Our comparative evaluation of three methods proposed for generating self-
similar sequences concentrates on two aspects: (i) how accurately self-similar pro-
cesses can be generated, and (ii) how fast the methods generate long self-similar
sequences. We consider three methods: (i) Paxson method [Paxson, 1995] based
on the fast Fourier transform (FFT) algorithm, which we call FFT method; (ii)
a method based on the random midpoint displacement (RMD) algorithm, im-
plemented by Lau, Erramilli, Wang and Willinger [Lau et al., 1995] and (iii) a
method based on the successive random addition (SRA) algorithm, implemented
by us [Jeong et al., 1998] (adapted from Saupe, D. in Chapter 5 of [Crilly et al.,
1991]).

Our results indicate that the SRA method is faster than two other meth-
ods when long sequences are generated. The SRA method produces sequences
with more accurate values of the Hurst parameter than the RMD method. This
suggests that the SRA method should be a serious candidate for generating self-
similar teletraffic in performance evaluation studies of communication networks.
For more detailed discussions, also see [Jeong et al., 1998].

In the next section basic definitions of self-similar processes and their proper-
ties, including slowly decaying variance, long-range dependence and Hurst effect,
are described. A comparative analysis of three methods for generating synthetic
self-similar sequences is presented in section 3. The efficiency of each method



in the sense of its accuracy and complexity is studied in section 4. Section 5
summarises the paper.

2 Self-Similar Processes and Their Properties

Traditionally, teletraffic has been modeled by Poisson processes, but several re-
cent traffic studies in real networks have shown that packet inter-arrivals and
service demands do not follow exponential distributions. Poisson models fail
to accurately capture real traffic behaviour where traffic bursts appear over a
long range of time scales or when correlations persist over large time scales.
As mentioned, it has been shown that better models of teletraffic are based on
self-similar stochastic processes. These models are defined as follows:

A continuous-time stochastic process {Xt} is self-similar with a self-similarity
parameter H(0 < H < 1), if for any positive stretching factor c, the rescaled
process with time scale ct, c−HXct, is equal in distribution to the original pro-
cess {Xt} [Beran, 1994]. This means that, for any sequence of time points
t1, t2, . . . , tn, and for all c > 0, {c−HXct1 , c

−HXct2 , . . . , c
−HXctn} has the same

distribution as {Xt1 , Xt2 , . . . , Xtn}.
Self-similar processes are characterised by a single key parameter called the

Hurst parameter H. This parameter is designed to capture the degree of self-
similarity in a given sequence of empirical data.

In more detail, let {Xk} = {Xk : k = 0, 1, 2, . . .} be a (discrete-time) station-
ary process with mean µ, variance σ2, and autocorrelation function (ACF) ρ(k),
for k = 0, 1, 2, . . ., and let {X(m)

k }∞k=1 = {X(m)
1 , X(m)

2 , . . .}, m = 1, 2, 3, . . ., be a
sequence of batch means, i.e., X(m)

k = (Xkm−m+1 + . . . + Xkm)/m, k ≥ 1.
The process {Xk} with ρ(k) → k−β, as k → ∞, 0 < β < 1, is called exactly

self-similar with H = 1 − (β/2), if the ACF, ρ(m)(k), for the process {Xk} and
for any m = 1, 2, 3, . . . is ρ(m)(k) = ρ(k). In other words, the process {Xk} and
the averaged processes {X(m)

k }, m ≥ 1, have identical correlation structure.
The process {Xk} is asymptotically self-similar with H = 1 − (β/2), if the

ACF ρ(m)(k) → ρ(k), as m → ∞.
The most frequently studied self-similar traffic models belong either to the

class of fractional autoregressive integrated moving-average (F-ARIMA) pro-
cesses or to the class of fractional Gaussian noise processes; see [Hosking, 1984],
[Leland et al., 1994], [Paxson, 1995]. F-ARIMA(p, d, q) processes were introduced
by Hosking [Hosking, 1984] who showed that they are asymptotically self-similar
with Hurst parameter H = d+ 1

2 , as long as 0 < d < 1
2 . In addition, the incremen-

tal process {Yk} = {Xk − Xk−1}, k ≥ 0, is called the fractional Gaussian noise
(FGN) process, where {Xk} designates a fractional Brownian motion (FBM)
random process. This process is a (discrete-time) stationary Gaussian process
with mean µ, variance σ2 and ACF ρk = 1

2 (|k+1|2H−2|k|2H+|k−1|2H), k > 0.
A FBM process, which is the sum of FGN increments, is characterised by three
properties [Mandelbrot and Wallis, 1969]:

(i) it is a continuous zero-mean Gaussian process {Xt} = {Xs : s ≥ 0 and
0 < H < 1} with ACF ρs,t = 1

2 (s2H + t2H − |s− t|2H) where s is time lag and t



is time;
(ii) its increments {Xt − Xt−1} form a stationary random process;
(iii) it is self-similar with Hurst parameter, H , that is, for all c > 0, {Xct} =

{cHXt}, in the sense that, if time is changed by the ratio c, the function {Xct}
is changed by cH .

Main properties of self-similar processes include ([Beran, 1994], [Cox, 1984],
[Leland et al., 1994]):

– Slowly decaying variance. The variance of the sample mean decreases more
slowly than the reciprocal of the sample size, that is, V ar[{X(m)

k }] → cm−β

as m → ∞, where c is a constant and 0 < β < 1.
– Long-range dependence. A process {Xk} is called a stationary process with

long-range dependence (LRD) if its ACF ρ(k) is non-summable, that is,∑∞
k=0 ρ(k) = ∞. The speed of decay of autocorrelations is more like hy-

perbolic than exponential.
– Hurst effect. Self-similarity manifests itself by a straight line of slope β on a

log-log plot of the R/S statistic. For a given set of numbers {X1, X2, . . . , Xn}
with sample mean µ̂ = E{Xi} and sample variance S2(n) = E{(Xi − µ̂)2},
Hurst parameter H is presented by the rescaled adjusted range R(n)

S(n) (or R/S

statistic) where R(n) = max{
∑k

i=1(Xi − µ̂), 1 ≤ k ≤ n} − min{
∑k

i=1(Xi −
µ̂), 1 ≤ k ≤ n} and S is estimated by S(n) =

√
E{(Xi − µ̂)2}. Hurst found

empirically that for many time series observed in nature the expected value
of R(n)

S(n) asymptotically satisfies the power law relation, i.e., E[R(n)
S(n) ] → cnH

as n → ∞ with 0.5 < H < 1 and c is a finite positive constant.

3 Three Methods

Two methods, the FFT and RMD, were suggested as being sufficiently fast for
practical applications in generation of simulation input data. In this paper, we
have reported properties of these two methods (FFT and RMD) and compare
them with SRA. These methods can be characterised as follows:

3.1 FFT method

This method generates approximate self-similar sequences based on the fast
Fourier transform and a process known as the fractional Gaussian noise (FGN)
process. Its main difficulty is connected with the power spectrum which is based
on an infinite sum required. Paxson solves this by applying a special approxima-
tion.

Figure 1 shows how FFT method generates self-similar sequences. Briefly,
these transformations (i) calculate the power spectrum using the periodogram
(the power spectrum at a given frequency represents an independent exponential
random variable); (ii) construct a sequence of complex values which are governed
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by normal distribution; (iii) apply the inverse FFT. For a more detailed reference,
see [Paxson, 1995].

The FFT method has three input parameters; the Hurst parameter H(0.5 <
H < 1), the mean input rate M , and the peakedness factor A, defined as the
ratio of variance to the mean.

3.2 RMD method

The basic concept of the random midpoint displacement (RMD) algorithm is to
extend the sequence recursively, by adding new values at the midpoints from the
values at the endpoints.

Figure 2 shows how the RMD algorithm works. Figure 3 illustrates the first
three steps of the method, leading to generation of the sequence (d3,1, d3,2, d3,3, d3,4).
The reason for subdividing the interval between 0 and 1 is to construct the
Gaussian increments of X . Adding offsets to midpoints makes the marginal dis-
tribution of the final result normal. For more detailed discussions of the RMD
method, see [Lau et al., 1995], [Peitgen et al., 1992].
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Fig. 3. The first three steps in the RMD method

Given a sequence of the approximate FBM process {Xt} generated by the
RMD method, we can transform it into the self-similar cumulative arrival process
{Yt} [Lau et al., 1995], [Norros, 1994]: {Yt} = Mt+

√
AM{Xt}, t ∈ (−∞, +∞)

where M is the mean input rate and A is the peakedness factor, which is defined
as the ratio of variance to the mean, M > 0, A > 0. The Gaussian incremental
process {Ỹt} from time t to time t + 1 is given as: {Ỹt} = M +

√
AM [{Xt+1}−

{Xt}].

3.3 SRA method

Another alternative method for the direct generation of FBM process can be
based on the successive random addition (SRA) algorithm [Crilly et al., 1991].
The SRA method uses the midpoints like RMD, but adds a displacement of
a suitable variance to all of the points to increase stability of the generated
sequence.

Figure 4 shows how the proposed SRA method generates an approximate
self-similar sequence. The reason for interpolating midpoints is to construct the
Gaussian increments of X , which are correlated. Adding offsets to all points
makes the marginal distribution of the final result normal and produces a more
precise self-similar sequence of an approximate FBM process than RMD.

The SRA method consists of the following steps:

Step.1 If the process {Xt} is to be computed for times instances t between 0 and
1, then start out by setting X0 = 0 and selecting X1 as a pseudo-random
number from a Gaussian distribution with mean 0 and variance V ar[X1] =
σ2

0 . Then V ar[X1 − X0] = σ2
0 , and for 0 ≤ t1 ≤ t2 ≤ 1,

V ar[Xt2 − Xt1 ] = |t2 − t1|2Hσ2
0 . (1)

Step.2 Next, X 1
2

is constructed by the interpolation of the midpoint, that is, X 1
2

=
1
2 (X0 + X1).
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Step.3 Add a displacement of a suitable variance to all of the points, i.e., X0 =
X0 + d1,1, X 1

2
= X 1

2
+ d1,2, X1 = X1 + d1,3. The offsets d1,∗ are governed

by fractional Gaussian noise. For Equation ( 1) to be true, it is required
that V ar[X 1

2
− X0] = 1

4V ar[X1 − X0] + 2S2
1 = (1

2 )2Hσ2
0 , that is, S2

1 =
1
2 ( 1

21 )2H(1 − 22H−2)σ2
0 .

Step.4 Next, Step.2 and Step.3 are repeated. Therefore, S2
n = 1

2 ( 1
2n )2H(1−22H−2)σ2

0

where σ2
0 is an initial variance and 0 < H < 1.

Step.5 The sequence of points {Xt} is normalised to obtain the same sequence
(cumulative arrival process) as that generated by FFT and RMD.

Using the above steps, the SRA method generates an approximate self-similar
FBM process.

4 Analysis of Self-Similar Teletraffic Generators

Three generators of self-similar sequences of pseudo-random numbers described
in the section 3 have been implemented on a Sun SPARCstation 4 (110 MHz,
32MB) using C. The mean times required for generating sequences of a given
length were obtained by using the SunOS 5.5 date command and averaged over
30 iterations, having generated sequences of 32,768 (215), 131,072 (217), 262,144
(218), 524,288 (219) and 1,048,576 (220) numbers.

We have also analysed the efficiency of these methods in the sense of their
accuracy and complexities, both from the theoretical and experimental point of
view. For each of H = 0.5, 0.55, 0.7, 0.9, 0.95, each method was used to generate
100 sample sequences of 32,768 (215) numbers starting from different random
seeds. Self-similarity of the generated sequences was assessed on the basis of
R/S statistic. We have summarised the results of our analysis in the following:

4.1 R/S Statistic

The estimated Hurst parameter Ĥ , obtained from the R/S statistic, has been
used to compare the accuracy of three methods. Then, the mean inaccuracy



Table 1. Comparison of relative deviation of the mean inaccuracy (∆H) from the
required Hurst parameter value using R/S statistic plot.

H FFT Method RMD Method SRA Method

0.5 +7.34 % +8.74 % +8.71 %
0.55 +5.32 % +6.28 % +6.23 %
0.7 +0.82 % +1.28 % +1.26 %
0.9 - 5.02 % - 4.46 % - 4.44 %
0.95 - 6.89 % - 6.34 % - 6.31 %

(∆H) is calculated as the relative deviation from the required value by using
the formula: ∆H = Ĥ−H

H ∗ 100%, where H is the input value and Ĥ is an
empirical mean value.

The values of the asymptotic slope, designated by the Hurst parameter, of the
R/S statistic plot in three methods are clearly between 1/2 and 1 (see Figure 5 -
8). A regression line showing the best least squares fit is also plotted, i.e., Ĥ = β̂
where β̂ is the value of an asymptotic slope. The mean inaccuracy (∆H) of the
estimated Hurst parameter, obtained by R/S statistic plot, is given in Table 1.
As we see, for H = 0.5, 0.55, 0.7, the FFT method is better than the other two,
while for H = 0.9, 0.95, the SRA method is best. However, all three methods
show that for 0.5 ≤ H < 0.735, the output Hurst parameters Ĥ are slightly
larger than the required values, while for 0.735 < H < 1, they are gradually
smaller than the required values; see Table 1.

4.2 Computational Complexity

– FFT method
The FFT method is the slowest of the three analysed methods for generating
self-similar sequences. This is caused by relatively high complexity of the
inverse FFT algorithm. Table 2 shows its time complexity and the mean
time of generation. It took 5 seconds to generate a sequence of 32,768 (215)
numbers, while generation of a sequence with 1,048,576 (220) numbers took
3 minutes and 47 seconds. FFT method requires O(nlogn) computations to
generate n numbers [Press et al., 1986].

– RMD method
The RMD method is faster and simpler than FFT. Table 2 shows its time
complexity and the mean time of generation. Generation of a sequence with
32,768 (215) numbers took 3 seconds. It also took 1 minute and 33 seconds to
generate a sequence of 1,048,576 (220) numbers. The theoretical algorithmic
complexity is O(n) [Peitgen and Saupe, 1988].



Table 2. Comparison of complexity and time of generation. Time of generation was
obtained by using the SunOS 5.5 date command on a Sun SPARCstation 4 (110 MHz,
32MB); each mean is averaged over 30 iterations.

Sequence of
Method Complexity 32,768 131,072 262,144 524,288 1,048,576

Numbers Numbers Numbers Numbers Numbers
Mean generation time (minute:second)

FFT O(nlogn) 0:5 0:20 0:35 1:12 3:47
RMD O(n) 0:3 0:11 0:29 0:40 1:33
SRA O(n) 0:3 0:10 0:20 0:40 1:31

– SRA method
The SRA method appears to be the fastest of the three methods considered.
Table 2 shows its time complexity and the mean time of generation. It only
took 3 seconds to generate a sequence with 32,768 (215) numbers. Generation
of a sequence with 1,048,576 (220) numbers took 1 minute and 31 seconds.
The theoretical algorithmic complexity is O(n) [Peitgen and Saupe, 1988].

Our results show that the RMD and SRA methods were more efficient in
practical applications than FFT, when long self-similar sequences of numbers
are needed.

5 Summary

This study has indicated that the SRA method is faster in the sense of computa-
tion time than the FFT and RMD methods proposed for generating self-similar
sequences. The self-similar sequences generated by the SRA method also gave
more precise values of the Hurst parameter than the RMD method.

Recently, many studies of self-similar traffic have tried to accurately and
quickly generate self-similar sequences. However, all existing methods for gener-
ating synthetic self-similar sequences have drawbacks of either being computa-
tionally expensive, or generating approximate self-similar sequences with inac-
curate values of Hurst parameter.

Our search for more efficient and accurate generator of self-similar sequences
of pseudo-random numbers will be continued. We are also working on developing
new tools for investigating self-similarity, including those based on periodogram
and variance-time plots and maximum likelihood estimation (MLE).
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Fig. 5. R/S statistic plots for FFT, RMD and SRA method (H = 0.55).
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Fig. 7. R/S statistic plots for FFT, RMD and SRA method (H = 0.9).
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Fig. 8. R/S statistic plots for FFT, RMD and SRA method (H = 0.95).


