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tion are estimates, and one must consider the precision
of the estimates before making any constructive con-
clusions about the investigated systems. This paper
applies an automated distributed simulation method,
called Spectral Analysis in Parallel Time Streams, to
speed up production of performance estimates, and for
run-length determination in the simulation of High-
speed Metropolitan Area Networks (MANs). This
method makes sequential simulators suitable for par-
allel execution on multiprocessors and/or networked
computers. At runtime it estimates the information
content of observations generated during simulation,
generates a point estimate and confidence interval,
and directs the run to continue until an estimate is
obtained that achieves or exceeds our required level of
precision. The application of this methodology for
studying high-speed MANGs, the speedup, intermachine
communication and “warm-up” overhead, and the
run lengths needed to produce estimates with a specific
level of precision, are reported for each of the param-
eters investigated. Practical implications are discussed.
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1. Introduction

Obtaining reliable estimates of steady-state performance
measures by means of stochastic simulation is difficult
since observations generated by the simulated process
are autocorrelated. Thus their information content is
unknown and typically less than that of observations col-
lected by random sampling so that classical statistical
techniques cannot be applied for inferring the precision
of estimates [1-7]. Moreover, each simulated process
traverses an initial transient (“warm-up”) period. Ob-
servations generated during this “warm-up” phase do
not characterise the steady-state behaviour of the simu-
lated process [1, 6]. Thus simulation output data have
to be properly, statistically analysed before any con-
structive conclusions about the investigated networks
are made. As stated by J. Kleijen, a world authority on
simulation:

“...computer runs yield a mass of data but this mass
may turn into a mess” if the random nature of output
data is ignored, and then “...instead of an expensive
simulation model, a toss of the coin had better be used...”
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Unfortunately, simulations in electrical and telecom-
munications engineering are often computationally in-
tensive and can require excessively long run times in
order to obtain results at a desired level of precision
[8, 9, 10]. Moreover, our simulation studies are often
iterative, so once results are at hand, they often motivate
questions which require more runs to answer, and so on.

Recognising the need for reliable results within a
practical time, a special method, called Spectral Analy-
sis in Parallel Time Streams (SA-PTS), based on the
method of Spectral Analysis [11] for sequential simu-
lations, was developed to produce performance esti-
mates with a given level of precision, and for run-length
determination [7, 12, 13, 14]. SA-PTS also speeds up
simulation using multiple Simulation Engines (SEs)
which run in parallel on multiple workstations. SA-PTS
has being implemented in AKAROA, an object-oriented
simulation package developed by us for automated
precision control of steady-state estimates and auto-
matic generation and parallel execution of quantitative
simulations. This paper is devoted to the application
of AKAROA in simulation studies of standard Distrib-
uted Queue Dual Bus (DQDB) high-speed metropoli-
tan area networks (as adopted by the IEEE, ISO, ANSI
and ETS standards organisations [15, 16]) as well as
enhanced versions of DQDB. In particular, the real-time
speedup, inter-machine communication and “warm-up”
overheads, and run lengths needed, will be assessed for each
DQDB performance parameter.

Section 2 introduces DQDB networks, their model-
ling assumptions, and the performance parameters to
be estimated during each simulation run. Section 3
reviews the SA-PTS methodology implemented by
AKAROA and explains its application in the studies
of DQDB. The effectiveness of AKAROA in speeding
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up DQDB network simulations, as well as its over-
heads, are analysed for each of the target performance
parameters using 600 benchmark experiments. Results
from the benchmarking and from actual production
runs are summarised in Section 4. Section 5 focuses on
some practical implications.

2. DQDB Networks

DQDB (Distributed Queue Dual Bus) is the Medium
Access Control (MAC) protocol adopted by the IEEE
as well as by the International Standard Organisation
(ISO) as a Metropolitan Area Network (MAN) stan-
dard [15, 17, 18, 19, 20, 21, 22, 23]. DQDB has also been
adopted as a European Telecommunications Standard
(ETS 300). Already services! provided by networks us-
ing the DQDB protocol have being introduced in the
United States, Europe, and Australia. Also, methods
are under research for upgrading standard DQDB in
the future; e.g., see [24]. The standard DQDB architec-
ture and a full protocol definition are given elsewhere
[15, 24], and will only be outlined here.

The DQDB network is composed of two high-speed
(approximately 150 Mbps) unidirectional busses, car-
rying fixed-size slots in opposite directions; see Fig-
ure 1(a). Each slot comprises an Access Control Field,
and a payload field that can carry one fixed-length data
packet (called a segment ); see Figure 1(b). Interconnect-
ing stations using a (dual) bus topology introduces a
“pecking-order” for stations which is a function of
their relative position along the respective bus. Stations
compete for empty slots subject to the media access
rules of DQDB. The DQDB protocol tries to treat all sta-
tions equitably. Thus the objective of many simulation
studies of the “fairness” of DQDB networks is to esti-
mate the mean access delay of station i over bus A,
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Figure 1. DQDB network: (a) dual bus technology; (b) the slot format

1 For example, the Switched Multi-Megabit Data Service (SMDS) and the Connectionless Broadband Data Service [16].
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E[D;], defined as the mean length of time between the
arrival of a segment to the head of the transmission buf-
fer of station i for transmission on bus A, and its trans-
mission. Results for bus B can be derived by symmetry.
Let N be the number of stations.

The stream of segments arriving at station i from its
local data sources is modelled as a Poisson process
with arrival rate A; segments per slot time (fori=1, 2,
.., N). Traffic generated by each station is uniformly
distributed over all possible destinations. Thus, in the
case of bus A, where stations from head-of-bus (HOB)
to end-of-bus (EOB) are numbered from 1 to N, the
traffic generated by station i and addressed to its
downstream neighbours has the rate:

M = Nt M

The rate of traffic generated by the same station i to its
downstream neighbours on bus B is:

N-i

Ma = N1

A fori=1,2,..,N
Each new segment arriving at a station is stored in an
input buffer. Two such input buffers are assumed per
station, one per bus, and each of capacity of M seg-
ments. The assumed interstation propagation delay
equals one slot time. This gives a bus length of approx-
imately 4 km, for N = 10 stations and transmission
speed of 155 Mbps.

In all benchmarks and production runs, we simulta-
neously estimate E[D;],i=1, 2, ..., N — 1 during a single
experiment, plus the mean network throughput.

3. Simulation Methodology

AKAROA accepts sequential un-instrumented simula-
tors written in C or C++, or one built using AKAROA's
Build toolkit and transparently transforms it into one
suitable for parallel execution on a network of work-
stations. Figure 2 outlines the DQDB simulator devel-
opment. It comprises three phases: (1) Sequential
DQDB simulator construction using C/C++ or using
AKAROA’s Build toolkit; (2) Specify desired level of
precision (using AKAROA'’s Control module), and (3)
Parallel Simulation Engine generation (automated us-
ing AKAROA's Parallel Simulation Manager module).

3.1 Sequential Simulation Construction

All sequential DQDB simulators were constructed us-
ing AKAROA Build. Build is an object-oriented tool-
kit for fast construction of discrete event simulation
models in C/C++. The use of Build is optional, and
AKAROA can be used with any simulator written in
C or C++. The only changes needed are that the ran-
dom number generator and data collection facility
provided by AKAROA should be used instead, and
that the user specify the desired level of precision of
the results (explained in Section 3.2).

Using the Build toolkit, the structure of DQDB simu-
lators mirrors that of real DQDB networks. From Fig-
ure 1, we see that a real DQDB network is comprised
of N stations, slots on two busses, and segments. Ac-
cordingly, three classes of objects were defined to mod-
el stations, slots, and segments. Station and slot classes
were defined using Build’s base classes such as queues,
plus user-coded member functions, mainly to model
the DQDB protocol’s Media Access Control (MAC)
rules followed by stations. Segments were modelled
directly using Build’s entities base class. The scheduled
events are slot arrival (to stations), and segment gen-
eration (at stations for transmission). When a sched-
uled event occurs, member functions of entities af-
fected by the event are invoked. For example, when
slots arrive at stations, the processnewslots member
functions of stations are invoked, so all stations can
execute the MAC procedure of DQDB for accessing
and processing header information in new slots. All
activities in DQDB networks were sequenced using
Build’s event scheduler, and all random behaviour
such as the inter-generation times of segments at sta-
tions were modelled using Build’s statistical support
functions.

3.2 Declaring Required Level of Precision of Results

The desired level of precision of estimates is easily de-
clared in the DQDB simulator through a SPECTRAL-
ANALYSIS object like:

SPECTRALANALYSIS sav(sigmamax, 1-alpha, net_size);
The sav object (of class SPECTRALANALYSIS) is also

used for automatic data collection, compaction, and
statistical analysis of simulation output results. This is

' ) ' ~\ e “\
Basic
USER .
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DEFINED ; AKAROA
DQDB DQDB simulator Parallel DQDB
DQDB MODEL ; AKAROA ; ; PARALLEL ; ; ;
Simulator CONTROL with automatic SIMULATION Simulation Engine
%?Rggg@ﬁgg local transient and MANAGER
components) steady-state
\ ) analysis \ Y

Figure 2. Main phases of distributed DQDB Simulation Engine construction with AKAROA

OCTOBER 2000 SIMULATION 213



vya@micky /net/u/v/vya/theaikid/theaikid /tony/simu/pdqdb/B2/P8 199 > akstat
AKAROA / AKSTAT: Host micky contacting Directory_Central on sleepy, port 2020
AKAROA /AKSTAT:
AKAROA /AKSTAT:

AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:
AKAROA /AKSTAT:

DIR_CENTRAL>
DIR_CENTRAL>

DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>
DIR_CENTRAL>

Hostname (Membership_Class)

AKAROA /AKSTAT:

AKAROA / AKSTAT: Terminating Normally
vya@micky /net/u/v/vya/theaikid/theaikid /tony/simu/pdqdb/B2/P8 200 >

sneezy
bashful

happy

sleepy

daisy

chekov (

fish (1
(

koala

8 machines registered

Figure 3. Viewing the AKAROA Domain with akstat

done by invoking the processnewobs member function
of sav like:

stopsimulation = sav.processnewobs(access_delay, station_id);

whenever the station_idth station transmitted a seg-
ment (and hence knows the access_delay of that seg-
ment). sav returns STOP when the mean delays of all
N - 1 stations? and the mean network throughput have
been estimated to sigmamax level of relative precision
or better. Otherwise CONT is returned (the simulation
should continue).

This use of the SPECTRALANALYSIS object is the
only change needed to a sequential DQDB simulator.
All further steps in parallel simulator generation and
execution, and online data analysis and precision con-
trol, are automated by AKAROA.

Meaning of Statistical Terms
Let:
P[XI—HSE[DI] le"r‘H] =1—OL

where X; is the point estimate of E [D; ]. This means the
probability that the true value of the mean access de-
lay of station i lies within (X; - H, X; + H) equals 1 - o..
Then:

2 The Nth station has no segments for transmission on Bus A,
so its access delay need not be estimated. We let the Nth
parameted processed by sav be for estimating the network’s
throughput. Thus N (=net_size) parameters are estimated
during one run.
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1. The interval (Xi - H, Xi + H) is called the confidence
interval for E [Di]. H is often called the half-width
of the confidence interval.

2. 1-ois called the level of confidence. Typical values
are 0.95 or 0.99. This is specified using the second
parameter (“I1 —alpha” above) in the declaration of
a SPECTRALANALYSIS object.

3. The ratio H/E[Di] is called the relative precision of
the point estimate. The desired relative precision
is specified by a user in the first parameter of the
SPECTRALANALYSIS declaration (named “sigma-
max” above).

3.3 Parallel Simulation Execution
3.3.1 Users’ View

At runtime, AKAROA presents a network of worksta-
tions as a single (virtual) uniprocessor to the simulation
user. Thus the user starts a distributed simulation run
using almost the same command as its sequential coun-
terpart, and can run the distributed simulation in the
background, and suspend or terminate it just as if it
were an ordinary simulation running on one machine.
Option parameters that can be given by the user are
the number of workstations to be used (the worksta-
tions can also be specified by names), and the priority
levels for AKAROA processes on each workstation.
For example:

key “pDQDBrunC t.dat t.sum 20 1.6” 10

runs a DQDB simulation using up to 10 machines to
execute simulation engines. Similarly:



key “pDQDBrunC t.dat t.sum 20 1.6” —m chekov daisy
fish koala sleepy happy bashful sneezy buntle altos

runs a DQDB simulation using workstations with
host names chekov, daisy, fish, koala, sleepy, happy,
bashful, sneezy, buntle, and altos.

The key command terminates when the simulation
finishes, just like an ordinary sequential simulation.
AKAROA commands can also be invoked within shell
scripts. The only restriction is that AKAROA simula-
tions should be executed on machines within the
AKAROA Domain. The AKAROA Domain is the set
of machines authorised to host AKAROA processes.
Tools are provided for registering new machines, and
for changing their membership class. Users can list
machines in the Domain using akstat; see Figure 3.

3.3.2 Runtime Processes and Precision Control Method
(Invisible to Users)

At runtime, the Parallel Simulation Manager (PSM) of
AKAROA creates and maintains an environment for
SA-PTS simulations. The PSM hides from the user the
fact that the simulation executes as multiple processes
on different machines. Simulation execution can be
logically divided into a:

1. Launch phase,

2. Simulation Engine/global_precision_control pro-
cess binding phase, and

3. Observation generation and analysis phase, fol-
lowed by distributed termination.

Simulation Launch

The initiation of a simulation involves three main
classes of PSM processes: key, Directory_Central, and
Local_Managers.

1. The key processes (running on the user’s machine)
make a request for running a new simulation
(LREQ) to AKAROA's Directory_Central process
(possibly running on a remote machine).

2. Upon receiving the request, Directory_Central

searches its Registered-AKAROA-Machine (RAM)
database to find machines in the AKAROA domain
that are most suitable for hosting Simulation En-
gines (SEs). Next Directory_Central sends an SE
launch request to a Local_Manager process at each
of the chosen machines.

3. Upon receiving an SE launch request, each

Local_Manager3 creates a new SE, and reports
back to Directory Central.

~
DQDB Simulation Engine
InvisibletoUser. =
Management Unit Local Precision Analysis Unit .
(Main Member Functions, :
new g Detectinit | [—
observation User protected: transient :I
Interface local_
public: estimation
Sequential ' slobal _ snalysis
estimation
DADB proces .
Simulator howobs ) :
set_timer
|'send_file PSM Interface Unit
_names 3 e To
zet_seeds -;;I E, 3 ﬁ_ other
. A= PSM
(defined by user) retorn set_oheok- i Ll Drocesses
STOP or CO STOP point_type g ; . | : i
g |9 :
or set_threshold| g g & L :
CONT constraints § @ :
= = B 2
L“:g :
T T T T T H Processes e
. J

Figure 4. Structure of a DQDB Simulation Engine

3 Each Local_Manager is responsible for fast creation and
management of AKAROA processes on its machine, and
for reporting on the machine status and load. We dis-

carded the possibility of using rex, rlogin, or rsh facilities

for remote process creation. They are not supported by

some UNIX variants, and are inefficient for the operations

AKAROA needs to perform. For example, to suspend a

remote process using rsh, the invoking process must wait

for a local rsh process to be created, then wait while a

request is transmitted to the remote machine for a remote
rsh peer to be created, then wait while environmental in-
formation is exchanged over the network, and then wait
until the remote process invokes the kill call, send the pro-
cess a suspend signal, and wait while the results of the kill
call is returned to the local rsh process. The overhead of
rsh is too high, in part because many features it provides

are unnecessary for operations that are frequently used by
AKAROA.
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AKAROA automatically manufactures Simulation
Engines (SEs) from non-parallel simulators written in
C, C++, or AKAROA's Build toolkit. An SE is a replica
of the DQDB model fitted with local transient and
steady state analyzers (phase 2), and with a Parallel
Simulation Manager interface unit (phase 3) for co-
operating with multiple global precision control pro-
cesses and other PSM processes during runtime. The
structure of an SE is depicted in Figure 4. For efficiency,
and for a model of communication which best encap-
sulates interactions between AKAROA processes, all
inter-machine interprocess communication is done
using PSM’s Remote Function Invocation facility im-
plemented on top of the Internet Domain Datagram
type socket interface to UDP/IP. SEs access this facil-
ity through their PSM interface objects, depicted in
the lower right quadrant of Figure 4.

Upon creation each SE will make a Generator Re-
quest (GREQ) remote function call to Directory_Central
when its execution encounters the constructor of the
SPECTRALANALYSIS object. The purpose of GREQ
is twofold.

Each SE must use a different random number gen-
erator. The set of generators must be mutually uncor-
related, i.e., if we concatenate the sequences of ran-
dom numbers of each generator into a macro sequence,
then numbers in the macro sequence should also be
uncorrelated. Currently such generators are created
by partitioning the sequence generated by a well-
tested generator into P, subsequences. This yields
up to P, virtual generators of period L/P,,,, or
P hax /2 generators of period 2L /P, or P, /3 gen-
erators of period 3L/P,,,., and so on, where L is the
period of the original generator. The seed to the start
of each virtual generator is stored in Directory_Central.
On receipt of a GREQ datagram, Directory_Central
returns to the SE the seed to an unassigned virtual
pseudo-random number generator from its generator
base. The period of the virtual generators returned by
Directory_Central is | P,y /P] (L/Ppay ) Where L x]
denotes the largest integer no greater than X, and P is
the number of SEs.

Secondly, Directory_Central updates its Active
Simulation Engine (ASE) database with an entry for
the calling SE. It holds information on the SE’s status,
machine address, port number, and process identifier.

Simulation Engine — Global_Precision_Control
Process Binding

When P SEs are employed (each running in parallel
on a different machine), then they have to cooperate
with N Global_Precision_Control (GE) processes. Each
GE process is responsible for estimating one parameter,
using local results generated by all SEs. To enable co-
operation, some facility must be provided for one pro-
cess to name and locate the others.

We intentionally dismissed the possibility of includ-
ing in the SE, GEs and other PSM programs the net-
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work machine addresses of the processes with which
each of them need to communicate. This compile time
binding of co-operating processes is undesirable, as it
slaves us into using specific machines: any addition or
removal or crashes of machines in the AKAROA
domain cannot be accommodated without changing
and recompiling several program codes. It also mean
that the number and location of SE, GE, Local_Managers
and other PSM processes have to be determined at
simulator generation and compile time.

In the solution developed for AKAROA, when an
SE initiates communication with a GE process, it first
sends a Locate_Request datagram to Directory_Central
(possibly on another machine), specifying the type
and instance of GE process it seeks. Directory_Central
is the only well known process in the AKAROA system.
Upon receiving a Locate_Request, Directory_Central
searches its Active_Control_Process (ACP) database
for an entry with the requested type and instance. If
one is found, it returns its machine address and port
number to the caller SE. Otherwise, Directory_Central
sends a request to a Local Manager on a selected ma-
chine, asking it to create a GE of the requested type
and instance. The Local Manager returns the port
number of the new GE to Directory_Central. In turn
Directory_ Central updates its ACP database, and re-
turns the machine address and port number to the
(PSM interface object of the) caller SE. Subsequent
communications between that SE and that specific
GE are made directly, without needing to go through
Directory_ Central.

This dynamic binding of cooperating processes also
allows AKAROA to allocate processes wherever is
most suitable (i.e., on which machines), and whenever
they are needed at runtime.

Observation Generation and Runtime Data Analysis
under SA-PTS

Each Simulation Engine uses a version of spectral
analysis by [11] for estimating the variance of the point
estimator from a regression fit to the logarithm of the
averaged periodogram of the sequence of observations
it generated after the estimated end of the initial tran-
sient (i.e., “warm-up”) period. One object is dedicated
to local transient and steady state analysis of each es-
timated parameter in each Simulation Engine; see the
top right quadrant of Figure 4. At various checkpoints,
local point and variance estimates are sent to their cor-
responding Global Precision Control processes, possi-
bly on another machine (see Figure 5). The mth check-
point of the ith parameter at the nth Simulation Engine,
Chp,i(m), is set to Cp, i (1) = max (200, 2Ty ;), Cpi(m) =
Cpi(m-1) + 2Ty, ;, where T}, ; denotes the estimated
duration of the initial transient of the output process
corresponding to the ith parameter as determined by a
twin-gate test (see below). Setting the first checkpoint
at the nth Simulation Engine to C,;(1) = max (200, 2T,,;)
provides extra safety, as it means that the initialization
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Figure 5. Virtual-real time interactions between main AKAROA processes during parallel
execution of a DQDB simulation using two Simulation Engines and estimating three parameters

bias remaining in the first local estimate would be
limited, even if P is very large. Each Global Precision
Control process is responsible for collecting local esti-
mates from all Simulation Engines, and computing a
global estimate [12, 13] of its assigned parameter.
Thus in the case of an N station DQDB network, N
Global Precision Control processes would be created,
one for estimating the access delay of each station®,
plus one for estimating the overall network through-
put and delay. Figure 5 depicts the interactions between
DQDB Simulation Engines and the Global_Precision
Control processes when two SEs are used and three
parameters are estimated during one run.

As mentioned, another pitfall in the simulation of
telecommunication systems is that each simulated
process traverses an initial transient (“warm-up”) pe-
riod. Observations generated during this “warm-up”
phase do not characterise the steady-state behaviour
of the simulated process [1, 3, 4, 6, 8]. For example, a
natural point estimator of the steady-state mean access
delay encountered by segments at station S; before
they are transmitted is the arithmetic average of the
sequence of delay observations of segments transmit-

4 Except the station at the end-of-bus

ted from that station. Unfortunately, this point esti-
mator is biased, since we must initialise our simulator
to some initial state (in our simulations, the empty-
and-idle state was chosen). Thus, during the start of
the simulation, segments can typically be transmitted
from the station with less delay than that of segments
generated at the station at later simulated times, when
the simulated network behaviour is closer to its nor-
mal loaded state. Including the delays of segments
transmitted at the start of simulation in the point esti-
mate gives an over-optimistic (i.e., smaller) estimate
of the steady state mean segment delay.

To avoid this mistake, for each Simulation Engine
and for each estimated parameter, AKAROA uses a
twin-gate procedure comprising of Gafariants Heuris-
tic [25] with k = 25 crossings to obtain a rough estimate
of the end of the transient phase [1, 6, 8], followed by
repeated applications of Schruben’s test [26] until
steady state conditions were detected for that process
at the oo = 0.05 level of significance. In all simulated sys-
tems, and in the estimation of all parameters, observa-
tions collected during the transient period were dis-
carded. This means that only observations generated
after the estimated end of the initial transient were
used in forming the point estimates.
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Distributed Termination Phase

Each Global Precision Control processes (GE) main-
tains only information pertaining to the parameter it
is responsible for estimating. Therefore no GE knows
when all estimates have achieved the required preci-
sion. In the solution implemented in AKAROA, each
SE is responsible for maintaining its copy of a progress
status board. This has N squares, one per parameter.
Whenever an SE reaches a checkpoint for parameter
pi it makes a Global_Estimation call to the GE respon-
sible for p;. The value returned by the GE indicates
whether the global estimate of p; has attained the re-
quired precision. If p; has achieved the needed preci-
sion, the SE puts a check in the ith square of the status
board. Next, if the SE finds that all N boxes of its status
board are checked, it will initiate the termination se-
quence by making a Stop Request (SREQ) call to
Directory_Central. Upon receiving a SREQ, Directory_
Central steps through its ASE database. For each entry
except the one corresponding to the SE which invoked
SREQ, Directory_Central requests the Local_ Manager
on the machine hosting the SE to send a Termination
Request (TREQ) signal to the SE. Finally Directory_
Central completes the simulation by sending a TREQ
to the key process.

4. Performance Results
4.1 Real-Time Speedup

Define real-time speedup in estimating E[Di] to a specific
precision using P processors, Speedup;(P), as:

real-time used to estimate
E[Di] using 1 processor

Speedup;(P) =
P Pi real-time used to estimate

E[Di] using P processors

Speedup;(P) measures the mean real-time speedup
seen by an AKAROA user if he/she was estimating
the mean access delay of the ith station in a DQDB net-
work to a specific precision.

With AKAROA, it is also possible to estimate a
number of parameters during a single simulation ex-
periment. Define overall simulation speedup using P
processors to estimate N parameters to a specific pre-
cision, Speedup*(P), as:

real-time used to complete the
simulation using 1 processor

Speedup*(P,N) =
real-time used to complete the

simulation using P processors
The Speedup+(P) that is achieved depends on the

expected duration of the most difficult parameter be-
ing estimated. Thus we can write:
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max {time to estimate ith parameter
using 1 processor; i =1, ..., N}

Speedup*(P,N) = . : -
max {time to estimate ith parameter

using P processors; i =1, ..., N}

The performance of AKAROA was assessed using a
series of 600 benchmark simulation experiments using
P=1,2,4,6,8 and 10 processors. All experiments
simulated an N = 10 station DQDB network where
each station has a transmission buffer for Bus A that
can store M = 20 segments. An inter-station propaga-
tion delay of one time slot, and a normalized load of
E[A4] =0.80 was assumed. In all benchmarks, we si-
multaneously estimated E[D;],i=1, 2, ..., 9 during a
single run, plus the mean network throughput. All ten
estimates were required to have the relative precision of
Enax = 1% (or less), at the 0.95 confidence level. Each ex-
periment was repeated 100 times using 1, 2 3, 6, 8 and
then 10 workstations.

In these experiments, the AKAROA domain consists
of ten SUN ULTRA 10 workstations. All of them have
a SPARC CPU operating at 300 MHz and a sparc FPU.
They are interconnected by 10Mbps Ethernet. Four of
them have 384 Mbytes of real memory; the remainder
have 128 Mbytes. We executed the P = 1 benchmarks
using one of the 384Mbyte machines, and the others
using a mixture. Thus we expect our results for speed-
up to be conservative. To verify that all machines were
idle (except for AKAROA'’s processes) during bench-
marks, we sampled the percentage of idle CPU (avail-
able for user processes) on every employed worksta-
tion between every simulation run. A buffer time of
eight seconds was provided before and after running
the load sampling program to avert I/O contention
from paging and/or swapping from the task switching.

10

1 2 4 6 8 10
Number of Processors

Figure 6. Overall real-time speedup when
estimating 10 parameters during one experment



The overall simulation speedups when using P
workstations, averaged over 100 benchmark experi-
ments for each value of P, is graphed as a function of
P in Figure 6. As shown, using P workstations on av-
erage completed the experiment P times faster. Fur-
ther, the average speedup exceeded P in some cases.
This can be partly credited to the reduction in over-
shooting when P > 1 (see below}.

Sometimes a network designer is interested in esti-
mating the mean access delay of a specific station.
What real-time speedup can be achieved by using P
workstations to estimate a specific E[D;] ? Figures 7,
8, and 9 report the average real-time speedups when
estimating E[D;], fori=1,2, ..., 9, using P =4, 8, and
10 workstations, respectively. These results show ex-
cellent speedup in most cases, where using P worksta-
tions speeds up the estimation of the parameter by P
times. Speedups greater than P were observed when
estimating the access delay of stations near the head
and end of bus (stations at positions 1 and 9).

4.2 CPU Time Speedup in Parallel DQDB Simulations

Define CPU-Speedup*(P) as the reduction in CPU time
per processor (normalised to the average time needed
to generate an observation), when P processors are
used. Let CPU-Speedupi(P) be the corresponding
CPU-speedup measure for the estimation of E[D;].

In contrast to Speedup#(P,N) and Speedupi(P),
CPU-time speedup measures the reduction in compu-
tation time per machine engaged in simualtion. Thus
it measures speedup in ideal situations, when losses
of time caused by interprocess communication, simu-
lation launch, binding of cooperating processes, and
termination are negligible.

The average CPU-Speedup*(P) are reported in Fig-
ure 10. Comparing the replication lengths as a function
of P, we observe that the reduction in CPU time with
P workstations is near 1/P or better. The better than
1/P CPU-Speedup+(P) can be due partly to reduced
overshooting, and the fact that n observations gener-
ated in parallel by P Simulation Engines have greater
entropy than if they were collected from a single Sim-
ulation Engine.

Results for CPU-Speedup(P) as a function of i, for
P =4, 8, and 10, are reported in Figures 11, 12, and 13.
Near or above linear CPU-speedups can be observed.
It should be emphasized that in our benchmarks, the
number of observations collected for estimation (as re-
ported in Figures 10, 11, 12, and 13) is typically less than
the total number generated. For example, after the es-
timate of E[D;] has achieved the specified relative pre-
cision, delay observations for segments transmitted
from station 5 would continue to be generated (though
not used). The whole model must evolve until all 10 pa-
rameters have been estimated to the required precision.

The number of observations needed to estimate the
access delay of a station varies strikingly from approxi-
mately 80,000 (station 9) to 520,000 (station 1). This

Speedup

1 2 3 4 5 6 7 8 9

Station Number

Figure 7. Real-time speedups in estimating access
delays of stations 1 to 9 using P = 4 workstations

1 2 3 4 5 6 7 8 9
Station Number

Figure 8. Real-time speedups in estimating access delays of
stations 1 to 9 using P = 8 workstations

Speedup
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Figure 9. Real-time speedups in estimating access
delays of stations 1 to 9 using P = 10 workstations
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Figure 10. Average number of observations
collected per simulation experiment
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Figure 12. Average number of observations
per SE for estimating E[D,],i=1,2,..,9;P=8
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Figure 11. Average number of observations
per SE for estimating E[D,],i=1,2,..,9;P=4
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Figure 13. Average number of observations
per SE for estimating E[D,],i=1,2,..,9;P =10

strongly highlights the importance of using dynamic
run-length control, if results of specific accuracy are
required. In all cases the average number of observations
needed for estimating E[ D;] decreased as a function of .i
DQDB’s MAC mechanism can restrain a station from
using empty slots for a nondeterministic period (dura-
tion of its COUNTDOWN state [24]), so that some
empty ones are left for stations downstream. However,
DQDB is known to be unfair, e.g., see [24], and stations
closer to the Head-of-Bus are less likely to be restrained
(have better access to empty slots). Also, they have more
segments for transmission on that bus. Consequently
we intuitively expect that the sequences of access de-
lays of stations near the Head-of-Bus are more corre-
lated (since segments are less likely to be delayed by
nondeterministic periods) than sequences from sta-
tions further downstream. This could explain the de-
crease in the average number of observations needed
for estimating E[D;] as i increased.
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4.3 Owershooting

In all benchmarks, the estimates can have higher rela-
tive precision than €, = 1%; i.e., the estimation pro-
cess overshoots. Figure 14 reports the relative precision
of the final estimates, averaged over all 10 parameters
and over all 100 experiments. As can be seen, the level
of overshooting is reduced as P grows.

Within each Simulation Engine, local estimates of
the ith parameter are produced at various checkpoints.
The distance between consecutive checkpoints in the
nth Simulation Engine equals 2T, ; observations (refer
to Section 3.3.2). A Simulation Engine using a smaller
inter-checkpoint spacing typically invokes the corre-
sponding GE more frequently. The minimum inter-
checkpoint spacing when using P Simulation Engines
ismin{2T,;,n=1,2, .., P} The expected minimum
inter-checkpoint spacing thus decreases as P is in-
creased. Thus the expected frequency of production of
global estimates increases, lowering the “jumps” in
relative precision of successive global estimates. This
reduces overshooting.
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4.4 Inter-Machine Communication Overhead

The average number of datagrams transmitted dur-
ing one DQDB benchmark experiment is plotted in
Figure 15. As can be seen, on average over 6,000 data-
grams were transmitted per simulation experiment
when P > 1. The number of datagrams transmitted for
the estimation of E[Di],i=1, 2, ..., 9, when P =4, 8 and
10 workstations were used are graphed in Figures 16,
17 and 18 respectively. The high real-time speed in
spite of these large overheads shows the efficiency of
AKAROA PSM’s inter-machine interprocess commu-
nication facility.

4.5 Significance of the Initial Transient Periods

In all Simulation Engines, for each parameter, obser-
vations generated during the initial transient period
(warmup phase) were discarded. The average total
number of transient observations discarded by each
Simulation Engine are reported in Figure 19. As shown,
approximately 2,800 observations were discarded per
Simulation Engine. This compares to an average run-
length of 250,000 observations per SE when P = 10, to
almost 2,000,000 observations when P = 1. Hence the
overhead of the warmnp period is relatively low.

Figures 20, 21, and 22 report the average transient
lengths of each parameter. As shown, the duration of
the warmup phase is somewhat shorter for stations
further from the Head-of-Bus.

4.6 Costs of Production Runs

AKAROA has been used to analyse in-depth the per-
formance of standard DQDB networks, DQDB with
slot reuse (DQDB/SRU), as well as DQDB networks
with slot pre-and-reuse (DQDB/SMU) [25]. In these
production runs, the access delays of stations and the
throughput were estimated to a relative precision of
5% as determined by SA-PTS, for N = 120, M = 50,

p = 0.4 and 0.90, respectively. A subset of run-length
results are plotted in Figures 23 and 24 as a function of
station index. DQDB/SRU and DQDB/SMU networks
differ from standard DQDB in that stations near the
End-of-Bus are also unfairly favoured, as they are more
likely to re-use slots [25]. This is reflected in higher
run-lengths needed to estimate their access delay.

5. Conclusions

The practicality of using the SA-PTS distributed simu-
lation method to speed up DQDB simulations, and for
obtaining performance estimates with specific accu-
racy, was assessed by 600 benchmark experiments,
plus production runs.

The results show that using P workstations can speed
up simulation experiments by almost P times. Speed-
ups in the real time used to estimate each parameter
were also measured. Results showed that near optimal
linear speedup can also be achieved if the objective of

222 SIMULATION OCTOBER 2000

350

300

250

200

150

100

Duration of Initial Transient

50

1 2 3 4 5 6 7 8 9
Station Number

Figure 20. Average number of observations
discarded per SE in estimating E[D,],i=1,2, .., 9, P =4
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Figure 21. Average number of observations
discarded per SE in estimating E[D,],i=1,2,..,9;P=8
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Figure 22. Average number of observations
discarded per SE in estimating E[D,],i=1,2,..,9; P=10



the simulation was to estimate any one of the DQDB
performance parameters.

The SA-PTS precision control methodology imple-
mented by AKAROA incurred an intermachine inter-
process communication overhead of 6,000 datagrams
per simulation experiment, plus computation costs of
data collection and producing local and global esti-
mates at checkpoints. The high real-time speedup in
the presence of these overheads suggests the efficiency
of AKAROA's inter-machine interprocess communica-
tion facility, and that a good balance has been achieved
between checkpoint spacing (level of overshooting)
and communication. AKAROA uses discarding to
improve the quality of estimates. The benchmarks
showed that the lengths of initial transient periods (as
estimated by a twin-gate test) of DQDB output pro-
cesses were typically much less than 1% of the corre-
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Figure 24. Run-lengths in estimating E = [D;], i =1 to 20,

to a relative precision of 5% in simulations of DQDB,
DQDB/SRU and DQDB/SMU networks; E[; ,] = 0.90
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Figure 23. Run-lengths in estimating E = [D,], i =1 to 20,
to a relative precision of 5% in simulations of DQDB,
DQDB/SRU and DQDB/SMU networks; E[A; ,] = 0.40

sponding run-lengths. This suggests that in the case of
DQDB studies, the overhead of discarding observa-
tions generated during the initial transient periods is
relatively low.

The number of observations needed to estimate the
access delay of segments transmitted from station i (as
determined using SA-PTS) decreased strikingly as a
function of i. DQDB is known to be unfair, e.g., see [24],
and stations closer to the Head-of-Bus are less likely to
be delayed from transmitting a segment. Consequently
we intuitively expect that the sequences of access delays
of stations near the Head-of-Bus are more positively
correlated (since segments are less likely to be delayed
by non-deterministic periods) than sequences from sta-
tions further downstream. Highly correlated observa-
tions have lower entropy (information content about
the estimated parameter) than less correlated ones, so
more observations must be collected before an estimate
with the required accuracy is achieved. This could
explain the increase in the average number of observa-
tions needed for estimating E[D;] as i decreased. How-
ever, none was so large as to make obtaining reliable
performance estimates of DQDB networks by SA-PTS
using simulation studies infeasible. Given the avail-
ability of AKAROA (which fully automates the tasks
of distributed SA-PTS simulator generation and execu-
tion, leaving to the user only the task of model specifi-
cation), the development costs of distributed DQDB
simulators that rapidly produce estimates with a re-
quired level of accuracy are just as low (or lower, us-
ing AKAROA Build) than that of writing “un-instru-
mented” simulators that produce results of question-
able reliability.
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