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ABSTRACT 

The method of Spectral Analysis proposed by 
Heidelberger and Welch (SA/HW) is an effective and 
efficient way of calculating the error of a sample mean 
in sequential simulation. A simple modification to the 
method improves the coverage of the resulting 
estimators in the case of sequential simulation.  
 
INTRODUCTION 

Sequential stochastic discrete-event simulation, i.e. 
stochastic simulation with on-line analysis of output 
data, is generally accepted as the most effective way to 
secure representativeness of samples of observations 
collected during simulation (Law and Kelton 2000). In 
this scenario, a simulation experiment is stopped when 
the statistical error of the estimate(s) reaches a required 
(low) level.  
The method of Spectral Analysis proposed by 
Heidelberger and Welch (1981), which we abbreviate to 
SA/HW, has proved to be an effective and efficient way 
of calculating the statistical error. While more 
sophisticated spectral methods have been proposed (e.g. 
Lada, Wilson and Steiger, 2003), SA/HW is the only 
currently known method of sequential estimation of 
steady-state mean values in which designers have large 
freedom for deciding about the granularity of sequential 
data analysis, since SA/HW can be applied after 
grouping data in blocks of arbitrary size. This makes it 
an attractive choice for parallel simulation executed 
under the Multiple Replications in Parallel (MRIP) 
scenario (see Ewing, Pawlikowski, and McNickle, 
2002.)  In this paper we consider a simple modification 
of the SA/HW algorithm which improves the coverage 
of the estimators still further.  
 
THE SPECTRAL ANALYSIS METHOD 

Simulation output often consists of highly correlated 
sequences of observations, for example waiting times of 
successive customers in a queue.  Estimating the error in 
the mean waiting time thus requires techniques that 
account for this correlation.  The best known method is 
that of Batch Means, where the means of batches of 
observations chosen large enough to be almost 

independent are used to construct a confidence interval. 
Two problems with Batch Means are: in sequential 
simulation the granularity imposed by the batch length 
means that runs may be longer than needed; and finding 
an easy algorithm to reliably determine the size of the 
batch length is difficult. Figure 1 illustrates this problem 
for a particular algorithm.  Here Batch Means has been 
used to produce supposedly 95% confidence intervals  
(the horizontal line.) However the actual coverage (see 
Section 2) of the confidence intervals drops off as the 
traffic intensity (and hence correlation of waiting times) 
in an M/M/1 queue increases. 
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Figure 1: Coverage produced by an automated Batch 
Means Method. M/M//1 queue 

 
The reduction in coverage turns out to be almost 
entirely due to the fact that the algorithm for 
determining batch length has produced batches that are 
too short.  Daley (1968) gives formulas for the serial 
correlation of M/M/1 waiting times. Law (1977) 
outlines the steps needed to calculate the serial 
correlations between the batch means from these 
correlations. Using this method we can estimate the 
expected coverage (plotted as a dashed line) from the 
average batch lengths that the algorithm has produced. 
Thus almost all of the reduction in coverage appears 
able to be explained by the fact that the batches are too 
short. Since reliably estimating small correlations is 
difficult, the method of Batch Means always carries this 
risk: that the batches will be too short and hence batch 
means will remain significantly correlated. 
On the other hand the Spectral Analysis method of 
estimation of the variance of a steady-state mean from a 
correlated sequence of observations x0, x1,… explicitly 
takes account of correlation between the observations. It 
was originally proposed as a simulation output analysis 



method in Heidelberger and Welch, (1981). The 
variance is obtained as the value of the periodogram 
P(f) (of the analysed sequence of observations) at 
frequency f=0.  Because of high variability of a typical 
periodogram at low frequencies, in SA/HW its value at 
f=0 is obtained through a regression fit to the logarithm 
of the averaged periodogram, where fitting is done 
using a polynomial of degree d (typically d = 1 or 2).  
The fitting is done using K fixed points of the 
periodogram. As shown in Heidelberger and Welch 
 (1981), if d=2, then the confidence interval  of the 
sample mean can be obtained  using quantiles of the 
Student t-distribution with 7 degrees of freedom  (if 
K=25). The periodogram can be calculated either over 
the sequence of individual observations or over the 
sequence of their batch means. Thus SA/HW can be 
also applied to sequences of batch means of arbitrary 
size, instead of individual observations, greatly reducing 
storage and processing costs.  In a subsequent paper, 
Heidelberger and Welch (1981b) considered a range of 
alternative values for d, and adaptive smoothing 
techniques. However they concluded that for both fixed-
length and sequential simulation, the modifications 
offered no substantial improvement over their original 
recommendation of d=2 and K=25 points.  
 
COVERAGE ANALYSIS 

Coverage analysis is widely used for assessing the 
quality of different methods used for constructing 
confidence intervals on the basis of simulation output 
data.  By performing a large number of experiments we 
estimate the fraction of the generated confidence 
intervals which actually contain the true value of the 
parameter. If the method is accurate then when the 
theoretical confidence level has been set for example to 
95% this fraction should also be close to 95%. 
We performed sequential analysis of coverage, using the 
methodology described in Pawlikowski, Ewing and 
McNickle (1998), to produce coverage of SA/HW 
estimates with a relative precision of 0.01 at the 95% 
confidence level.  It is worth noting that for each setting 
of the parameters of the reference models, getting 
coverage results with the statistical accuracy required 
meant that up to 14,000 separate experiments were 
needed. 
Experiments were conducted for a number of reference 
models: M/M/1, M/D/1 and M/H2/1 and some simple 
network models. Here we give only the results for the 
queueing models, with traffic intensities ranging from 
0.1 to 0.9. Figure 2 shows the coverage produced by the 
original SA/HW algorithm in sequential simulation for 
estimating the mean waiting time in the queue, plotted 
against the load.  
There are two effects that can be noted. The first is that 
the coverage becomes poorer as the models become 
more variable. And the second effect is that the 
coverage reduces slightly, but steadily as the load in 
each of the queues increases. 
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(a) M/D/1 
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(b) M/M/1 
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(c) M/H2/1 

   
Figure 2: Coverage for SA/HW,  
M/D/1, M/M/1, M/H2/1  Queues 

 
We are using the sequential version of SA/HW 
described in Pawlikowski (1990) in which the 
observations are grouped into a number of batches, and 
only the batch means are used as data. Our hypothesis is 
that that this fall-off in coverage is due to the increased 
run lengths required for more variable models, or as the 
traffic intensity increases, which in turn have resulted in 
batches of larger size. Large batches, we claim, may 
result in an inappropriate but easily fixed shape of the 
fitting polynomial. 
 
A MODIFICATION TO SA/HW 

As mentioned previously, one attraction of the method 
is that it can be applied to grouped data, with essentially 
no change in the algorithm. Grouping the data reduces 
storage and network costs, so this is an attractive option. 
As the batch length increases the spectrum becomes 
flatter, tending towards the constant needed to estimate 
the variance of the overall mean. Heidelberger and 
Welch recommend approximating the log of the 



periodogram by a low order polynomial, preferably of 
order d=2, in order to estimate the log of the 
periodogram at zero. For problems where the acceptable 
relative error is fairly high (e.g. greater than 10%) we 
have found that this works reasonably well, because the 
spectrum does have a shape that decays away from zero 
frequency. However where a very small degree of 
relative error is required we have found that the 
simulation can stop too early, with coverage well below 
the specified level.    
The reason for this appears to be that the fitted 
polynomial is often convex upward when the simulation 
stops. In fact over the range of queueing models we 
have observed that about 90% of the simulations using 
SA/HW with d=2 stopped with a convex upward 
quadratic. 
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Figure 3: Typical Quadratic and Average Fits to the Log 

of the Averaged Periodogram at Stopping Time 
 
For example Figure 3 shows the average and quadratic 
fits to grouped data, with a batch length of 1024, of 
waiting times for an M/M/1 queue with a traffic 
intensity of 0.8, at the time when the simulation stopped 
with an estimated relative error of 0.05, for a 95% 
confidence interval.  
The upper and lower dashed lines show the values that 
must be reached for the simulation to stop for d=2, and 
d=0 respectively. Thus this simulation will stop if a 
quadratic fit is used, but will not stop if d=0.   
Since the stopping criterion is satisfied when the y 
intercept falls below a prespecified level it is clear why 
this form of fitting polynomial is most likely to occur at 
the stopping time. However a quadratic (d=2) with a 
positive slope at zero is unrealistic, since the 
periodogram from simulation output should be a 
reducing function of frequency, especially after 
batching. Heidelberger and Welch (1981b) commented 
on the relative values of d = 0, 1 and 2, and suggested 
three adaptive methods for picking or altering the 
degree of the polynomial during the run. They 
concluded that for both fixed-length and sequential 
simulation, they offered no substantial improvement 

over their original recommendation. However the 
fraction of sequential simulations which actually stop 
with a convex upward quadratic suggest a simpler 
approach which appears to work well. 
Since grouping has reduced the periodogram to close to 
that of an independent process, an obvious modification 
is to replace the polynomial by simply averaging the 
values in order to estimate the intercept, in cases where 
an inappropriate (i.e. increasing at zero) polynomial 
occurs. This is equivalent to fitting a polynomial of 
degree zero.  
Thus if: d=2 and the slope of the quadratic at f=0 is 
positive, we use the average of the periodogram points 
as the estimate of P(0). The Heidelberger and Welch 
method requires two constants:  C1(K,d) to produce an 
unbiased estimate of P(0), and C2(K,d) to give the 
approximate degrees of freedom of the t-distribution. 
For d=0, the values, which were not included in the 
original paper,  are: 
 

Table 1:  Constants for the Average Fit 
 

K D C1(K,d) C2(K,d) 

25 0 .987 76 

50 0 .994 154 
 
Thus if the stopping criterion appears to have been met 
and the slope at  f=0  is positive, we use the average 
value and the parameters in Table 1 to re-estimate the 
variance. The simulation only stops if this estimate of 
the error is small enough. 
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Figure 4: A Case where the Average Fit results in a 
Reduced Variance Estimate 

 
It should be noted that if the quadratic fit has a positive 
slope at f=0  this does not guarantee that the average 
will produce a larger variance estimate, as Figure 4 
shows. In this example the upper dashed line is the 



stopping criterion for d=0, while the lower line is that 
for d=2. Thus in this case the simulation will stop if an 
average is used, but will continue if we use the 
quadratic fit, in spite of  the quadratic having a positive 
slope at  f=0. 
Thus we consider two versions of the modification:  if 
the slope of the quadratic at f=0 is positive, we use the 
average unconditionally to re-calculate the variance, 
(“Slope Protection”), and using the average only if it 
provides a larger estimate of variance than the quadratic 
(“Conditional Slope Protection”). 
 
RESULTS 

The simulation were carried out using the Akaroa2 
Simulation package (Ewing, Pawlikowski, and 
McNickle, 1999.) The implementation of SA/HW, 
except for the modification as above, is as described in 
Pawlikowski, (1990) 
Figures 5 and 6 show the effects of these two schemes 
on the three queueing models. The coverage is 
uniformly increased, with the larger increase coming 
from the conditional scheme. The results for other 
reference models were consistent with those for simple 
queueing models presented here.  
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(a) M/D/1 
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(b) M/M/1 
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(c) M/H2/1 

 
 

Figure 5:  SA/HW with Slope Protection 
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(a) M/D/1 
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(b) M/M/1 
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(c) M/H2/1 

 
Figure 6: SA/HW with Conditional Slope Protection 

 
 



CONCLUSIONS 

The method of SA/HW has been found experimentally 
to produce coverage values which agree well with those 
expected.  Further improvements in coverage of SA/HW 
in sequential simulation can be obtained by adding a 
simple extra step to the calculation of the stopping 
criterion to check if the fitted quadratic is increasing at 
zero. When this happens using the average value of the 
periodogrsm instead of a fitted quadratic to estimate the 
variance of the mean provided coverage levels that were 
almost exactly those required. The conditional use of 
the average only if it gave a larger estimate of the error, 
produced results which were typically slightly above the 
specified level of coverage and could be considered as 
providing an additional margin of accuracy.   
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