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ABSTRACT

In steady-state simulation the output data of the transient
phase often causes a bias in the estimation of steady-state
performance measures. Common advice is to cut off this
transient phase. Finding an appropriate truncation point is
a well-known problem and is still not completely solved. In
this paper we propose an improved algorithm for the deter-
mination of the truncation point. The required run time of
this algorithm is substantially improved without reducing the
reliability of the results. Because this algorithm is based on
comparisons of empirical cumulative distribution functions,
the truncation point is valid for any arbitrary steady-state per-
formance measure, such as the mean, variance or quantiles.

INTRODUCTION

In discrete-event simulation the sequence of output data is a
stochastic process{Xj}∞j=1. The observations of this pro-
cess are usually correlated and influenced by the initial state
I of the system chosen by the analyst. LetFj(x|I) :=
Pr[Xj ≤ x|I] denote the cumulative distribution function of
Xj . Assuming an ergodic systemFj(x|I) is converging to-
wardsF (x) = limj→∞ Fj(x|I) which is called the marginal
cumulative distribution function of the process{Xj}∞j=1 in
steady-state. The primary concern of steady-state simulation
is to determine this distribution or derived measures.

In general the influence ofI is significant in the begin-
ning and decreases with increasing model time. If the in-
terest is focused on the steady-state behavior of the system,
this initialization bias is obviously undesirable. A common
way to reduce the influence ofI is to truncate the “most” in-
fluenced part of the stochastic output processX1, . . . , Xl−1.
Following this strategy the problem is to find an appropri-
ate truncation pointl. In the literature the steady-state phase
{Xj}∞j=l is, e.g., described as a phase which is ”relatively
free of the influence of initial conditions” [7] or by the state-
ment thatXl, Xl+1, . . . ”will have approximately the same
distribution” [11]. In practise there will often be an observa-
tion indexl, such that

(1) ∀j ≥ l : Fj(x|I) ≈ F (x)

is valid. Of coursel should be finite, and should be the

minimum of all indices, for which equation (1) holds. Even
though the estimation ofF (x) is the ultimate goal of steady-
state simulation, the expected value of the steady-state ran-
dom variableµ = E[X] is often the only measure of interest.
In this situation it is a generally accepted approach to replace
equation (1) by:

(2) ∀j ≥ l : E[Xj ] ≈ E[X]

In [12] it is shown that in the case of aM/M/1/∞ system,
the use of equation (2) works even in quantile estimation.
In general, however, the convergence of the mean is only a
necessary condition for stationarity, and not a sufficient pre-
liminary (see [15]). Therefore, equation (1) can be applied in
analysis of mean, variance, quantiles, or even rare-event es-
timation and equation (2) should only be used in mean value
analysis. In [9] experiments with methods based on equation
(2) are performed, and it could be shown that a least one of
them does not work at all well. However, the realization of
equation (1) is not straightforward. It is therefore not very
surprising, that the most common methods for detection of
the truncation point are based on a visual inspection of the
output data (see e.g. [15]). Other, completely algorithmic
methods only give proper results under special conditions
(see [13] and [8]) and are mostly based on one long simu-
lation run. Nearly all methods use equation (2), although in
the most frequent case the steady-state phase is defined by
the convergence ofFj(x|I) towards the steady-state distri-
butionF (x).

In the MRIP scenario (multiple replications in parallel,
see [14]) it is possible to observe a random sample ofp (num-
ber of replications) independent and identical distributed re-
alizations of eachXj . Let xij be thejth observation of
the ith replication, with1 ≤ i ≤ p and 1 ≤ j < ∞.
Therefore, the empirical (marginal) cumulative distribution
functionF̃j(x|I) based on the order statistic ofx1j , . . . , xpj

is an estimate ofFj(x|I). The use of independent replica-
tions is analyzed for the situation of mean value estimation
in [16] and [1]. The main source of error using independent
replications is the initialization bias. If this source of error
is eliminated, the estimates of independent replications are
more accurate than the ones of e.g. batching methods. In [6]
an approach is proposed which is based on equation (1) and
uses the MRIP scenario. Its performance is examined and



improved in [3] and [4]. An application of this approach is
demonstrated in [2]. The results show that this approach is
much more reliable than methods which are based on equa-
tion (2), especially if the transient behaviour is more com-
plicated. Unfortunately, however, the computing time of this
approach is quite large, possibly too excessive, and in appli-
cations the computing time is as important as reliability.

In the next sections an algorithm is described, which is
based on equation (1). In comparison to the algorithm de-
scribed in [4], the required run time of the new algorithm is
substantially improved without reducing the reliability of the
results. This is examined in a later section by comparing the
worst-case run time and the reliability of both algorithms. In
this paper only sequential methods and algorithms which are
based on a dynamic set of data are considered. Therefore, the
output analysis is performed online and guides the simulation
experiment until estimates are statistically reliable.

IMPROVED ALGORITHM

Listing 1 shows the improved algorithm in pseudo code,
where for convenience some special notations are used. Let
the sequence{yij}p

i=1 be the order statistic of{xij}p
i=1. Us-

ing the operators +, -, / and := in conjunction with sequences
(see lines 0, 5, 8, 10 and 15) means to use these operators on
each component separately. The operator≈ in line 10 and 15
implements equation (1) and is realized by the Kolmogorov-
Smirnov two-sample test (KS-test). If the null hypothesis of
equality is accepted the operator≈ (resp. the KS-test) results
true. The methodobserve()collects one observation of each
replication and the methoduniform(a,b)delivers a uniform
distributed integer random number betweena andb used as
index. The variablel is the actual candidate for the trunca-
tion point, at the end of the algorithm it is the valid truncation
point. The variablen is the number of observations collected
of each replication so far.r is the ratio between the transient
phase and the observed part of the steady-state phase (see
[3]).

Listing 1: Pseudo code of the improved algorithm

0 i n t l := 0 ; i n t n := 0 ; i n t r := 10 ; {si}p
i=1 := 0 ;

bool NoTes tFa i l ed :=f a l s e ;
whi le (¬NoTes tFa i l ed ){

n := n + 1 ;
obse rve ({xin}p

i=1 ) ;
5 {si}p

i=1 := {si}p
i=1 + {yin}p

i=1 ;
i f ( 0 6= n mod (r + 1) ) con t inue ;
l := l + 1 ;
{si}p

i=1 := {si}p
i=1 − {yil}p

i=1 ;
NoTes tFa i l ed :=t rue ;

10 i f (¬({yil}p
i=1 ≈ {si}p

i=1/(n− l)) )
NoTes tFa i l ed :=f a l s e ;

f o r ( i n t k := 1 ; k ≤ r ; k := k + 1 ){
i f (¬NoTes tFa i l ed ) break ;
i n t u :=un i fo rm (lk + 1 ,l(k + 1) ) ;

15 i f (¬({yil}p
i=1 ≈ {yiu}p

i=1) )
NoTes tFa i l ed :=f a l s e ;

}
}

The most time consuming factor of the algorithm de-
scribed in [4] is the increasing amount of KS-tests during
each step of the algorithm. The improved algorithm de-
scribed in Listing 1 avoids these tests by using the calcu-
lated sequence{si}p

i=1 which is an estimate ofF (x) based
on the latest observations during each step of the algorithm.
The sequence{si}p

i=1 is the sum of all order statistics which
are not part of the transient period. New observations are
added whereas observations of the transient period are sub-
tracted from{si}p

i=1 (see lines 5 and 8). Dividing each com-
ponent of{si}p

i=1 by the number of addends results in an
estimate ofF (x). This sequence is compared with the order
statistic of the actual test sample{xil}p

i=1 (see line 10). Be-
cause{si}p

i=1 is calculated of observations at different model
times, a possible periodic behaviour could be overlooked and
an unreliable estimate of the truncation point would be pos-
sible (cf. [4]). Therefore additionalr randomly chosen se-
quences are used to avoid this trap. The observed part of the
steady-state phase is divided intor equally sized intervals.
Each interval contains one randomly chosen sequence. In a
loop all of these sequences are compared with the actual test
sample{xil}p

i=1 (see lines 12 to 17). If the assumption of
equality is rejected by the KS-test for{si}p

i=1 or any of the
randomly chosen test samples the truncation pointl is not ad-
equate and more steps of the algorithm have to be performed.
In contrary to the previous version of this algorithm, the num-
ber of needed KS-tests in each step is constantlyr + 1.

WORST CASE TIME COMPLEXITY

In [4] it is demonstrated by experiments with a number of dif-
ferent kinds of transient behaviour that the previous version
of the algorithm described in Listing 1 is very reliable and
has therefore a great advantage over some other commonly
used methods for truncation point estimation. But the price
for this reliability is the high requirement of run time which
is O(n2p log(p)). This run time is possibly too exhaustive
for efficient implementations in application. In this section
it will be shown that the algorithm described in the previous
section is a substantial improvement, because its run time is
only O(np log(p)) without significant loss of reliability in
conjunction with any kind of transient behaviour.

As before, letp denote the number of replications andn
the amount of observations of each single replication. Note,
that especially at the end of the algorithmn is a multiple of
r + 1. The total number of observations ispn. Assume, that
all basic arithmetic operations are inO(1) (cf. [5]). In the
following the mentioned running times consider worst-case
time complexity.

Theorem
The worst case running time of the algorithm described in
Listing 1 isO(np log(p)).

Proof: Only KS-tests with random samples of sizep
are performed. The basis of the KS-test are two sorted ran-
dom samples. Sorting can be done inO(p log(p)). To de-

2



termine the maximum difference of the compared samples a
pointer has to be shifted through each sorted random sample.
This can be done in2p steps which leads toO(p). To accept
or reject the null hypothesis the determined maximum differ-
ence has to be compared with a tabulated critical value. This
can be done inO(1). Therefore, the run time of one KS-test
is O(p log(p)) + O(p) + O(1) = O(p log(p)).

The run time of a single execution of lines 3 and 6 isO(1)
and of lines 4 and 5 it isO(p). Because the while-loop in line
2 is executedn times before the algorithm stops, the run time
of this part of the algorithm isO(np).

A single execution of lines 7, 9 and 11 can be done in
O(1); a single execution of line 8 can be done inO(p);
to execute line 10 a run time ofO(p log(p)) is needed, be-
cause a KS-test has to be performed. Because of the condi-
tion in line 6 this part of the algorithm is executed onlynr+1
times. Therefore, the run time of this part of the algorithm is

n
r+1 · O(p log(p)) which leads toO(np log(p)) becauser is
a constant parameter.

A single execution of lines 12, 13, 14 and 16 needs only
a minor run time ofO(1). The KS-test in line 15 can be
done inO(p log(p)). The for-loop is executed at maximum
r times, therefore, the run time of one complete for-loop in
each step of the algorithm isr · O(p log(p)). All in all n

r+1
for-loops have to be performed. Therefore, the run time of
this part of the algorithm isn · r

r+1 ·O(p log(p)) which leads
to O(np log(p)).

Combining all results, the run time of the algorithm is
O(np) + O(np log(p)) + O(np log(p)) = O(np log(p))

Becausep could be considered as a constant parameter
and usuallyp << n holds, the run time could be described
by O(n). This run time is linear and highly efficient, because
each observation has to be processed at least once.

PERFORMANCE

To compare the reliability of both versions of the algorithm
the same artificial processes as in [4] are used, except the
starting condition of the ARMA process is changed, to cre-
ate a more unusual initial state. The output data of these
artificial processes is used to show the reliability on many
different kinds of transient behaviour. Especially for those,
where the use of equation (2) leads to unreliable results. Let
{εt}∞t=1 denote an independent Gaussian white noise process
(see [10]). In all experiments we usedp = 100, r = 10 and
an α-level of 0.05 for the critical value of the KS-test. For
details on this parameters the reader is referred to [3].

Process A: linear transient mean

Y
(1)
t = f

(1)
t + εt , f

(1)
t =

{
x− tx

l if t < l,

0 else.

with x = 10, l = 100

Process B: linear transient variance

Y
(2)
t = f

(2)
t · εt , f

(2)
t =

{
x− tx−1

l if t < l,

1 else

with x = 10, l = 100

Process C: exponential transient mean

Y
(3)
t = f

(3)
t + εt , f

(3)
t = x · e(t

ln(0.05)
l )

with x = 10, l = 100

Process D: ARMA(5, 5)

Y
(4)
t = 1 + εt +

5∑
i=1

1
2i

(Yt−i + εt−i)

with Y
(4)
−5 = Y

(4)
−4 = Y

(4)
−3 = Y

(4)
−2 = Y

(4)
−1 = 100

Process E: periodic

Y
(5)
t = f

(5)
t + εt , f

(5)
t = b · sin(ωt)

with b = 1, T = 2π
ω = 50

Process F: non-ergodic

Y
(6)
t = f

(6)
t εt + f

(1)
t , f

(6)
t = ct

with x = 10, l = 100, c = 0.01

The processes A to D converge towards a steady-state dis-
tribution. Therefore equation (1) can be used to estimate the
beginning of the steady-state phase. To achieve a solid result
of our meta output analysis the simulation experiments with
the algorithm described in [4] and the algorithm of Listing
1 are performed 20 times. The average of all results and its
confidence interval can be calculated with the standard inter-
val estimator for independent and identically distributed data.
The results are listed in table 1.

using 20 runs previous algorithm improved algorithm

Process A 98.00± 0.43 (0.4%) 97.25± 0.57 (0.6%)

Process B 86.20± 1.01 (1.2%) 82.20± 1.87 (2.3%)

Process C 103.05± 1.76 (1.7%) 99.25± 1.81 (1.8%)

Process D 190.25± 6.53 (3.4%) 185.00± 6.55 (3.5%)

run time O(n2p log(p)) O(np log(p))

Table 1: This table shows the average estimate of the trunca-
tion point and its confidence interval. Each result is based on
20 simulation experiments.

Surprisingly, the halfwidth of the confidence intervals is
in all our experiments smaller than five percent of the mean
value after fewer than 20 simulation experiments. This shows
that both algorithms deliver a robust estimate with a small
variance. Even though the results of both algorithms are
comparably good, the algorithm described in Listing 1 tends
to estimate the truncation point a bit earlier. This shows that
the fewer KS-tests of this algorithm are weaker than the large
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number of KS-tests in the previous version of the algorithm
which cause the long run time.

The processes E and F do not converge towards a steady-
state distribution, and so there is no steady-state phase at
all. Therefore, both algorithms should not return a trunca-
tion point. To check the reliability in this case each step of
the algorithms is observed by plotting the number of rejec-
tions of the null hypothesis (see Figure 1). The rejections
should be on a high level so that equation (1) will not be true
for any tested value ofl. To make the number of rejections
comparable they are standardized by the number of all per-
formed KS-tests. Therefore, the value1 means that all KS-
tests reject the null hypothesis, and the value0 means that all
KS-tests accept the null hypothesis.

(a) Process E / previous algorithm(b) Process E / improved algorithm

(c) Process F / previous algorithm(d) Process F / improved algorithm

Figure 1: The number of rejections of the null hypothesis
standardized by the number of all performed KS-tests. The
values are plotted over model time, each peak represents one
step of the algorithms.

The plots 1(a) and 1(c) of the algorithm described in [4]
are quite smooth, because a large number of KS-tests are
used to check equation (1). Additionally these plots show
that the KS-tests of the previous algorithm work reliably, be-
cause the number of rejected null hypothesis is on a high
level when analyzing process E as well as process F. Note,
this algorithm would accept an estimate, when the number of
rejections is below a certain threshold which is usually set at
0.05. The plots 1(b) and 1(d) of the algorithm described in
Listing 1 are not as smooth, because the number of KS-tests
is much smaller. However, the number of rejections of the
null hypothesis is also on a high level in both cases. Note,
the improved algorithm accepts an estimate only, if all KS-
test accept the null hypothesis. Therefore the improved algo-
rithm works on process E and F as reliably as the previous
algorithm.

Furthermore, process E is a good example to demon-
strate that a truncation point estimation exclusively based on
{si}p

i=1 is not sufficient. In Figure 2 the maximum differ-
ence of the actual candidate for the truncation point{xil}p

i=1

is compared with{si}p
i=1 (see plot 2(a)) resp. compared with

ther randomly chosen samples (see plot 2(b)). In the second
case the maximum difference of allr comparisons is plot-
ted. To achieve comparability the maximum difference is
standardized by the appropriate critical value of the KS-test.
If the standardized maximum difference is below1 then the
null hypothesis would be accepted by the KS-test.

(a) KS-tests with{si}p
i=1 (b) KS-tests withr random samples

Figure 2: This Figure shows the maximum differences of the
KS-tests. It is distinguished between the KS-tests of lines 10
and 15 (see Listing 1).

Plot 2(a) shows that in periodical distances the KS-test
based on{si}p

i=1 would accept the null hypothesis. This hap-
pens, because{si}p

i=1 cannot reflect the periodic behaviour.
Observations of different model times are combined which
results in the same problem as shown for the method of
Welch (see [4] and [15]). However, the KS-tests with the
randomly selected samples make sure that the improved al-
gorithm works reliably (see plot 2(b)).

LIMITS

Because equation (1) uses an approximation the estimate of
the beginning of the steady-state phase of process A is always
smaller than the theoretically best value which is in this ex-
amplel = 100. However, using the equality instead of an
approximation does not make sense in output processes such
as process C. Using the equality instead of an approximation
would lead to an infinite value forl, because in process C the
influence of the initial state disappears exponentially.

Figure 3 plots the results of simulation experiments for
the process A with different numbers of parallel replications.
The experiments are executed as described in the previous
section. This plot validates the assertion, that the estimate
is always smaller than the theoretically best value. Further-
more, another effect can be observed. The value of the esti-
mate of the truncation point is decreasing with a decreasing
number of parallel replications. Note, that the critical values
of the KS-test are defined for very small sample sizes, too.
The realization of the approximation of equation (1) based
on the KS-test gets weaker for smaller numbers of parallel
replications. Therefore, we recommend at least 30 parallel
replications, and if possible more than 50 parallel replica-
tions should be used. This limits are valid for the algorithm
described in [4] and in Listing 1.
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Figure 3: The quality of the estimate depends on the number
of used parallel replications. This plot shows the analysis for
process A with different numbers of replications.

CONCLUSIONS

We introduced an efficient algorithm for the estimation of
the truncation point. The worst case time complexity of this
algorithm is limited byO(np log(p)) and is, therefore, sub-
stantially faster than the previous version of the algorithm.

This improvement is achieved without reducing the reli-
ability of the estimates. This is experimentally shown on the
basis of artificial output processes with a variety of different
transient behaviours.

In the introduction it is pointed out that a truncation point
estimation based on equation (1) can be used for many differ-
ent performance measures, such as mean values, variances,
quantiles or even rare-events. Equation (2) is in general only
useful for mean value estimations.

However, limits concerning equation (1) are also dis-
cussed. It can be shown, that this equation does not always
leads to the theoretically best values. This is simply caused
by the approximation used. Using the equality instead of an
approximation is no alternative, because this would lead in
some cases (e.g. process C) to an infinite truncation point.
Equation (1) can be used to reduce the initialization bias dra-
matically, but it cannot be used to eliminate it completely.
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