
MODERN GENERATORS OF MULTIPLE STREAMS OF
PSEUDO-RANDOM NUMBERS

Krzysztof Pawlikowski and Marcus Schoo Donald C. McNickle
Department of Computer Science and Software Engineering Department of Management

University of Canterbury University of Canterbury
Christchurch, New Zealand Christchurch, New Zealand

E-mail: krys.pawlikowski@canterbury.ac.nz

ABSTRACT

In this paper, we examine the required features of modern
PPRNGs (Parallel Pseudo-Random Number Generators),
from the point of view of their possible applications in
the Multiple Replications in Parallel (MRIP) paradigm of
stochastic simulation. Having surveyed the most recom-
mended generators of this class, we test their implemen-
tations in C/C++. Their performance is compared from
the point of view of initialization and generation times
and results are given detailing the fastest and slowest.

1 INTRODUCTION

Parallel PRNGs (PPRNGs) with the required empirical,
analytical and deterministic properties are not trivial to
find (Hellekalek 1998, Mascagni & Srinivasan 2000).
However, recent research has resulted in several genera-
tors which appear to be of high quality (Fischer, Carmon,
Ariely, Zauberman & L’Ecuyer 1999, Mascagni & Srini-
vasan 2000, Mascagni & Srinivasan 2004, Matsumoto &
Nishimura 1998a, Panneton & L’Ecuyer 2005).

In this paper, we will examine the required features
of modern PPRNGs, from the point of view of their
possible applications in Multiple Replications in Paral-
lel paradigm of stochastic simulation(G. Ewing 1997), in
which each simulation engine runs an independent ver-
sion of the simulation and submits results of observa-
tions regularly to a central processor for analysis. The
MRIP paradigm of simulation has become more popular
with emergence of such packages as AKAROA-2, a fully
automated simulation tool for running stochastic simula-
tion in the MRIP paradigm, developed at the University
of Canterbury, Christchurch, New Zealand(G.C.Ewing &
D.McNickle 1999).

As MRIP distributes identical replications of a given
simulation over different simulation engines, each engine
requires an independent sequence of Pseudo-Random
Numbers (PRNs)(G.C.Ewing & D.McNickle 1999). The
success of such a simulation is highly dependent on the

quality of these multiple independent streams and the ef-
ficiency of their generation. The PPRNGs require the fol-
lowing properties: Intra-Stream Uniformity and Indepen-
dence; Inter-Stream Independence; Satisfactorily many
satisfactorily long streams of PRNs; Efficient Implemen-
tation.

Given a single stream of PRNs we can apply tests,
such as those described, for example, by Knuth (1997),
to ascertain if we are confident that the first property is
satisfied.

Being satisfied that we have a generator that is able
to produce a single stream of i.i.d random variables, two
paradigms exist for generating parallel streams.

Cycle splitting is the method of taking a single stream
{x} of PRNs produced by a single generator and splitting
this stream into P sub-streams {{x1}, {x2}, . . . , {xP }},
where P is the number of processors used in a simulation.
There are two variations on this paradigm. In blocking
we determine a block size B and assign to the ith pro-
cessor the stream {xi} = {xiB , xiB+1, . . . , xiB+(B−1)}.
Alternatively, in leap-frog, if P is the number of pro-
cessors, we produce the stream for the ith processor as
{xi} = {xi, xi+P , xi+2P , . . .}. Other methods exist but
all of them involve distributing the finite sequence pro-
duced by one generator to P processors. A potential prob-
lem is that PRNs generated by linear generators can ex-
perience long range correlations (Mascagni & Srinivasan
2004). Under cycle splitting such long range correlations
can introduce short range inter-stream correlations when
using blocking or short range intra-stream correlations
when using leap-frog(Mascagni & Srinivasan 2004).

An alternative to cycle-splitting is parameterization,
the method of creating a new, full cycle, independent
generator for each processor from a family of genera-
tors. Seed Parameterization is used with generators that
produce independent full length cycles depending on the
seed value. Iteration Function parameterization modifies
some value within the iteration function so that each pro-
cessor uses a different generator. The limiting factor here
is how many independent streams the parameterization
method can produce for a particular generator and how

quickly it can produce them.
According to a recently established theoretical restric-

tion for two dimensional pseudo-uniformity, a PRNG
generating numbers in a cycle of length L should be used
in a single simulation as a source of not more than 16 3

√
L

numbers in the case of linear generators. Assuming that
only 1% of simulation time is spent on generating PRNs,
a computer with a CPU clock running at 100THz (achiev-
able by 2042 assuming Moore’s Law with clock speed
doubling each 1.5 years) would need a linear PRNG
with cycle length of about 2110, for executing a sim-
ulation lasting one hour, or about 2140 for executing a
week long simulation. If a PRNGs cycle is split into say
214 = 16384 substreams for a parallel simulation, then
such a PRNG should have a cycle length of about 2160

for executing a simulation lasting one hour, or about 2182

for executing a week long simulation.
A modern PPRNG must satisfy all the properties de-

scribed above and several have been proposed that do so.
However, as well as being of long period and statistically
robust, there must be an efficient implementation both in
terms of memory and speed. In section 2 we introduce
the generators that we consider. Section 3 describes our
experiments and the results.

2 PARALLELIZABLE GENERA-
TORS

As distributed (and parallel) computing has become more
available and popular the need for PPRNGs that sat-
isfy the requirements described above has increased.
Many PRNGs with parallelization techniques have been
proposed. Linear Congruential Generators (LCGs) and
Feedback Shift Register Generators have received the
most attention and the theory and implementations of
these generators is highly developed. The history and
properties of two such generators of particular interest to
distributed applications are described in sections 2.1 and
2.2. Many alternatives exist however.

Mascagni and Srinivasan (2000) describe methods
to parameterize the simple linear congruential genera-
tor xn = axn−1 + b (mod m) by way of varying
a when m is prime, or b when m is a power of 2.
The period of such methods is limited by the modulus
to m − 1 and m respectively. Disadvantages, includ-
ing poor randomness in the least significant bits, make
LCGs with m = 2k a poor choice(Mascagni & Srini-
vasan 2000). The alternative, LCGs with prime mod-
uli, are most often implemented with a Mersenne prime
modulus as a fast algorithm exists for modular multipli-
cation with Mersenne prime moduli. However, to find
suitable values for a we must know all primitive roots of
m, a computationally complex task. To make the calcula-
tion of primitive roots trivial, Mascagni and Chi proposed
an LCG family with Sophie-Germain prime (Sophie-
Germain primes are of the form m = 2p + 1 where m
and p are prime) moduli and a fast modular multiplica-

tion algorithm for Sophie-Germain primes(Mascagni &
Chi 2004). They implemented this method in the form
of their Sophie-Germain Modulus Linear Congruential
Generator(SGMLCG), a 64-bit LCG family capable of
producing up to 263−10509 independent full period gen-
erators with period 263 − 21016. SGMLCG has passed
Marsaglia’s Diehard tests (Marsaglia 1995) as well as
the tests given as part of Mascagni’s SPRNG package
(Mascagni & Srinivasan 2000).

An alternative to linear PRNGs are the Inversive Con-
gruential Generators (ICGs) and Explicit Inversive Con-
gruential Generators (EICGs) by Eichenauer et al.(1986,
1993). They have similar properties to linear congruential
generators but have the distinct advantage of the absence
of the lattice structure associated with linear generators.
They do, however, have the disadvantages or requiring
modular inversion, a computationally costly process. For
further discussion on the theoretical and empirical prop-
erties of inverse generators as well as splitting techniques
we refer to (Hellekalek 1995).

2.1 MRG32k3a - Combined Multiple Re-
cursive Generator

Linear Congruential Generators, first put forward by
Lehmer (1951) in 1949, are based on the following sim-
ple linear recurrence;

xn = axn−1 + b (mod m) (1)

un =
xn

m
(2)

so that un is a i.i.d random variable in the range [0, 1).
Early questions on the statistical robustness of LCGs,

as well their relatively small maximum period of p = m
(p = m − 1 for b = 0), prompted research into the mul-
tiple recursive generator (MRG)(Grube 1973), defined as
follows;

xn = a1xn−1 + a2xn−2 + . . . + akxn−k (mod m) (3)

un =
xn

m
(4)

When the characteristic polynomial P (z) = zk +
a1z

k−1 + a2z
k−2 + . . . + ak is primitive, the MRG

achieves its maximum period of p = mk − 1, a consid-
erable improvement on a LCG with equal modulus. To
achieve a high quality in the sense of the spectral test,
the coefficients of recurrence (3) must be chosen such
that

∑k
i=1 a2

i is large. However for sake of efficiency
we wish to keep these coefficients small. To manage this
conflict, L’Ecuyer (1996) introduced the combined MRG
(CMRG) which combines J MRGs as follows;

xj,n = aj,1xj,n−1 + . . . + aj,kj
xj,n−kj

(mod mj) (5)

un =

(
J∑

j=1

xj,n

mj

)
(mod 1) (j = 1, 2, . . . , J) (6)

L’Ecuyer et al.(1996, 1999) investigated many param-
eters to make up the components of this CMRG and has
published examples of the CMRGs that are statistically
robust, easy to implement, efficient to run and generate

PRNs in very long cycles. One such example is the so
called MRG32k3a which is defined by two MRGs with
three terms each. This MRG32k3a has been shown by
L’Ecuyer et al.(1999) to perform well in statistical tests
up to at least 45 dimensions. It has a period of p ≈ 2191,
achievable with arbitrary seed initialization with at least
one non-zero element in each MRG.

An attractive feature of LCGs is that we can easily fast
forward the generator k steps as follows:

xn+i = aixn (mod m) (7)

This property allows us to easily perform a similar
operation on the MRGs which make up MRG32k3a and
parallelize via the blocking paradigm(L’Ecuyer, Simard,
Chen & Kelton 2001). If we put sj,n, the nth state of
the jth MRG, as the vector {xj,n, xj,n+1, xj,n+3} then a
3× 3 matrix A exists such that,

sj,n+1 = Ajsj,n (mod mj) (8)

And so the state sj,n+i is given by,

sj,n+i = Ai
jsj,n (mod mj) (9)

This approach is taken in the implementation given in
(L’Ecuyer et al. 2001). The implementation takes the full
cycle and splits it into streams of length 2127, splitting
each of those into 251 sub-streams of length 276.

2.2 Dynamic Creation of Mersenne
Twisters

As an alternative to early poor LCGs, the theory of Feed-
back Shift Registers (FSRs) was developed. Such gen-
erators offered better randomness than LCGs and, as
they worked using only bitwise operations, were very
fast. 1973 saw the introduction of the Generalized FSR
(GFSR) PRNGs (Lewis & Payne 1973) which were based
on the following recurrence;

~xl+n = ~xl+m ⊕ ~xl, (l = 0, 1, . . .) (10)

where ~xi is the ith word vector of size w and ⊕ is bi-
nary addition (exclusive OR). GFSRs were generalized in
the sense that, with suitably chosen seed, the period 2n−1
was not reliant on word size of the machine but on n, the
number of words used to store the state of the genera-
tor, which allowed for arbitrary long periods. Matsumoto
and Kurita (1992) recognized the merits of GFSR but also
identified four disadvantages: selection of seed is diffi-
cult; randomness qualities are questionable as it is based
on the trinomial tn + tm + 1; GFSRs period of 2n − 1
is much smaller than the theoretical maximum of 2nw;
and n words of memory are required to produce a period
of 2n − 1. To address these disadvantages Matsumoto
and Kurita (1992) developed the Twisted GFSR (TGFSR)
PRNG which introduced a twisting matrix A(w×w) into
the GFSR recurrence as follows:

~xl+n = ~xl+m ⊕ ~xlA, (l = 0, 1, . . .) (11)

For appropriately chosen values of n, m and A,
TGFSR achieves the maximal period of 2nw − 1 and,
due to the properties of the twisting matrix, achieves bet-
ter randomness, as the recurrence represents a primitive
polynomial with many terms rather than a trinomial. With
these advantages such generators were able to be cre-
ated with periods never before seen, such as the popu-
lar T800 with period 2800. Despite these successes, the
inclusion of the A matrix in TGFSR introduced a de-
fect in k-distribution for k larger than the order of the
recurrence(Matsumoto & Kurita 1994). The difficulty
stemmed from trying to set A such that ~xlA was fast to
calculate and to have good k-distribution for large k. To
address this difficulty a tempering matrix T was intro-
duced as follows;

~xl+n = ~xl+m ⊕ ~xlA, (l = 0, 1, . . .) (12)
~zl+n = ~xl+nT (13)

which, for appropriate values for T , is equivalent to
using a more computationally complex A. In (12) xl+n

is the output which is used in further recursions whereas
zl+n is the output random variable.

Testing the characteristic polynomial of A for prim-
itivity requires the complete factorization of 2mw −
1(Matsumoto & Kurita 1992). For many large nw such
decompositions are not known, and thus a limited num-
ber of large period TGFSRs were possible. To address
this limitation Matsumoto and Nishimura(Matsumoto &
Nishimura 1998b) invented the Mersenne Twister by ad-
justing the recurrence (12) to allow for a Mersenne prime
period as follows:

~xk+n = ~xk+m ⊕
(
~xu

k | ~xl
k+1

)
A, (k = 0, 1, . . .)(14)

~zk+n = ~xk+nT (15)

such that nw − r is the size of the state array of the
generator and 2nw−r is a Mersenne prime. For a pre-
determined integer r(0 ≤ r ≤ w − 1) the designation(
~xu

k | ~xl
k+1

)
means the concatenation of ~xu

k (the upper
w − r bits of ~xk) and ~xl

k+1 (the lower r bits of ~xk+1).
In the same paper as the Mersenne Twister algorithm,

code was released for MT19937, a Mersenne Twister
PRNG with a period of 219937 − 1 and 623-dimensional
equidistribution up to 32-bit accuracy. Such a mas-
sive period is possible as the prime decomposition of a
Mersenne prime is trivial and so the testing of primi-
tivity of polynomials becomes much faster(Matsumoto
& Nishimura 1998b). MT19937 has passed empirical
tests such as Marsaglia’s Diehard tests(Marsaglia 1995)
and Load and Ultimate Load Tests executed by the pLab
group (pLab 2004).

No algorithm is currently known for fast forwarding
MT19937 in a similar way that exists for MRG32k3a, so
cycle splitting is not a good option. However, a Mersenne
Twister is able of being parallelized through a parameter-
ization technique called Dynamic Creation as described
and implemented by Matsumoto and Nishimura (1998a).
The published implementation allows creation of up to

2
w
2 parallel Mersenne twisters with periods including

Mersenne primes from 2521 − 1 to 244497 − 1.
Despite their advantages, Mersenne Twister PRNGs

have one notable flaw. The recurrence (14) modifies very
few bits at each step and as such a poor distribution in
the state array will have long lasting affects in that the
poor distribution will remain in the state array for many
subsequent states(Panneton & L’Ecuyer 2005). As such,
we must take care when initializing the seed of Mersenne
Twister as a poor seed may produce a long non-random
stream of numbers. This is solved in the implementation
of MT19937 and Dynamic Creation by having a LCG to
randomly initialize the seed. This is, however, a poor
solution to the problem for two reasons. One, we pre-
fer generators that produce i.i.d numbers for any arbitrary
choice of seed (other than all 0’s). Two, the massive pe-
riod of Mersenne Twister is achieved as every permuta-
tion of the state array occurs somewhere in the period. As
such, even if the seed is not a poor state, the poor states
will occur somewhere in the period. Due to the super-
astronomical period of the Mersenne Twister we are not
likely to reach this poor state during any conceivable ap-
plication so this is a theoretical consideration only. To
deal with this problem Panneton and L’Ecuyer have de-
veloped WELL generators, an improved long-period gen-
erator class based on linear recurrences modulo 2. While
these WELL generators perform much better in terms
of recovering from a poor state(Panneton & L’Ecuyer
2005), they will still produce a stream of poorly dis-
tributed numbers given a bad state (though much shorted
than Mersenne Twister). As such initialization of seed
should still be done with care and further development of
this class of generators to address this problem is needed
before arbitrary seed choice is a reality.

2.3 Multiplicative Lagged-Fibonacci Gen-
erators

In an effort to achieve larger periods than offered by
LCGs, researchers in the 1950s considered recursions
which based xn not only on xn−1 but also on xn−2 as
follows(Knuth 1997):

xn = axn−1 + cxn−2 (mod 2b) (16)

The period of such a generator, for appropriate values
of a, c and m = 2b is as high as m2 = (2b)(2b), a marked
improvement over LCGs with maximum period m = 2b.
In the simplest case when a = c = 1 the recurrence (16)
represents the Fibonacci recurrence which displays poor
randomness qualities. To improve on this, a lag l was
added to the Fibonacci recurrence as follows(B.F. Green,
Smith & Klem 1959):

xn = xn−1 + xn−l (mod 2b) (17)

For large values of l (l > 15), (17) achieves much
better randomness than (16). Another advantage is that
the period, p = (2l − 1)(2b−1), is dependent on l as well

as b. As such, the period of such a generator can easily
be increased by choosing a larger lag l.

Even better performance is achieved supplementing
the lag l in (17) with a short lag, k, as follows,

xn = xn−k + xn−l (mod 2b) (18)

such that k < l. For appropriate values the maximum pe-
riod of p = (2l − 1)(2b−1) is achieved. (18) forms the so
called additive lagged-Fibonacci generator (ALFG). The
ALFG has been used extensively though it is now recog-
nized that it performs poorly in some relative simple sta-
tistical tests for even relative large lags(Knuth 1997). As
such it is necessary to choose l to be very large to ensure
a robust generator(Mascagni & Srinivasan 2004). An al-
ternative that performs much better is the multiplicative
lagged-Fibonacci generator (MLFG) defined by the fol-
lowing recurrence,

xn = xn−k × xn−l (mod 2b) (19)

The MLFG demonstrates better robustness than the
ALFG (Mascagni & Srinivasan 2004), however several
features of this generator are noteworthy. Firstly, it has a
slightly smaller period than the ALFG, with a maximum
period of p = (2l − 1)(2b−3), for appropriate values of
k and l and seed (xn−1 . . . xn−l). Secondly, due to the
multiplicative nature of the generator, and the fact that
an odd number multiplied with an even number gives an
even number, the sequence produced by (19) will even-
tually become all even, if not all seed values are odd. To
avoid this transient period at the beginning of the stream,
it is recommended to seed a MLFG with all odd values.
Further to this, the user must recognize that the least sig-
nificant bit of all numbers produced by MLFGs seeded in
this way will always be 1(Mascagni & Srinivasan 2004).

In terms of parallelization, cycle splitting and pa-
rameterization algorithms exist for both the ALFGs and
MLFGs. Efficient cycle splitting via blocking for both
ALFGs and MLFGs have been presented by Makino
(1994). Mascagni et al.(1995) proposed a paralleliza-
tion of ALFGs based on seed parameterization capable of
yielding 2(b−1)(l−1) distinct maximum period cycles. A
similar technique for MLFGs was proposed by Mascagni
and Srinivasan (2004) yielding 2(b−3)(l−1) uncorrelated
cycles. The default lag in Mascagni implementation is
l = 17 with b = 64, giving 2976 streams, each of period
approximately 3 × 276. Similar to their sequential ver-
sions, the parameterized MLFGs display better robust-
ness than the parameterized ALFGs with the latter failing
some standard tests due to inter-stream and intra-stream
correlations. The MLFGs perform well in tests, however,
even with small lags(Mascagni & Srinivasan 2004).

3 EMPIRICAL COMPARISON
We recognize that cycle splitting with MRG32k3a, Dy-
namic Creation of Mersenne Twisters (if appropriately

initialized) and seed parameterization with MLFGs pro-
duce high quality parallel streams in terms of inter-stream
and intra-stream independence, period length and number
of possible streams. However, we wish to consider the ef-
ficiency of these generators’ published implementations
with respect to their applications in the MRIP paradigm
of stochastic simulation.

3.1 Platform

Experiments were conducted on a Intel Pentium 4 CPU
running at 2.4GHz with 512KB of cache, a floating point
unit and 512MB of RAM, running Linux version 2.4.20-
24.9, gcc version 3.2.2 and Red Hat 9. As the genera-
tors were tested for their use in practical applications, it
is unrealistic to expect that the majority of users would
re-implement these generators themselves. As such pub-
lished implementations of the generators were used. A
C++ object oriented implementation of MRG32k3a was
made available by L’Ecuyer at (L’Ecuyer 2006). A C im-
plementation of Dynamic Creation was made available
by Matsumoto at (Matsumoto 2004). SPRNG(Mascagni
2005) (Scalable Pseudo-Random Number Generators)
is a library of tested parameterizable generators by
Mascagni, which includes the MLFG used here. For the
purpose of comparison we included in our tests a com-
bined EICG with a period of P = 293, implemented
through the pLab’s PRNG library(pLab 2004).

3.2 Initialization

Before taking part in a simulation each engine must be
assigned an independent stream of PRNs. We consider
initialization to be this process of assigning a stream to
an engine, including any calculation of parameters, ini-
tialization of seeds etc. Initialization is the time taken
from the instant when an engine requests a stream to the
point at which it is able to start generating PRNs. Figure
(1) shows a comparison between the four generators we
consider. For each generator we initialize n streams, for
various n, and plot the average initialization time for that
n. For example if n = 3 and a given PPRNG finishes ini-
tializing the first stream after 2 seconds, the second after
4 seconds and the third after 6 seconds, the mean ini-
tialization time for that generator at n = 3 would equal
4. As each engine may begin simulation as soon as its
stream is initialized, the mean time is most appropriate
for comparison. Initialization of cEICG and MRG32k3a
is done using a fast forwarding technique which is se-
quential. This means as n becomes large the average time
needed to initialize a stream increases linearly. While
both processes are linear, we see the initialization by
cEICG is slower than MRG32k3a. The implementation
of MRG32k3a assumes fixed stream sizes and as such
has precomputed the matrix required to move from one
stream to the next. The pLab’s cEICG allows for arbi-
trary stream sizes so no precomputation is possible and so
initialization is much slower. Both Dynamic Creation and

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000 60000 70000

M
ea

n
In

iti
al

is
at

io
n

Ti
m

e
(s

ec
)

Number of parallel streams required (n)

MRG32k3a
Mersenne Twister - Dynamic Creation

MLFG
EICG

Figure 1: Mean waiting time for stream initialization

the SPRNG MLFG follow the parameterization paradigm
and both implementations have initialization routines that
accept an ID and return independent streams for indepen-
dent IDs. Working on the assumption that each engine
has access to a unique ID, this allows the initialization of
Dynamic Creation and SPRNG MLFG to be parallelized
in such a way that each engine may initialize it’s own gen-
erator concurrently without any inter-engine or engine-
control unit communication and without fear of loss of
independence. As such, the average initialization time
of these generators is constant as n increases. To reach
a figure for these constants 100 Mersenne Twisters and
100,000 MFLG streams were created and the mean time
was taken. Due to the fast constant initialization time of
the MLFG its line is not visible, running along the x-axis
at a time of 0.0001 seconds.

MRG32k3a streams were initialized to be the default
length of 2127. Dynamic Creation was asked to cre-
ate Mersenne Twisters with 32 bit word length and pe-
riod 2521, an implementation minimum. SPRNG created
MLFGs with the default lag of l = 17 and b = 64, yield-
ing generators of period p ≈ 3 × 276. PLab’s PRNG
library was asked to construct CEICG streams of length
p ≈ 262.

3.3 Generation

We assume that, once initialization is complete, each en-
gine will have access to an independent stream of PRNs at
least 276 numbers in length. As such, it is practically im-
possible for an engine to exhaust its allocated stream and
require another. Having looked at initialization speed we
need only to look at the speed at which PRNGs generate
numbers.

All four generators were required to generate n num-
bers in the range [0, 1). Figure (2) shows generation times
for all generators tested. As expected all generators run
in linear time with respect to n. As all operations in Dy-
namic Creation’s Mersenne Twisters are bitwise, it is the
fastest. A single multiplication and modulo operations
mod 2 make MLFG the second fastest. The more com-
plex operations of MRG32k3a make it the third fastest,

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Number of random numbers generated (1,000,000’s)

MRG32k3a
Mersenne Twister

MLFG-Floats
EICG

Figure 2: Generation Time per Simulation Engine

while the inversion operation of the cEICG make it by far
the slowest. The performance of the cEICG can be im-
proved by reducing the number of EICGs that make up
the cEICG. However, this will also reduce to period of
the generator.

4 CONCLUSION
Given the existence of a single stream PRNG, two
paradigms exist which may be employed to achieve paral-
lel streams of PRNs. Cycle splitting, which involves dis-
tributing a single large cycle into various streams. Alter-
natively, parameterization involves modifying some pa-
rameter in the base generator such that different parame-
ters result in different independent full period streams.

Though high quality generators are difficult to find,
several have been proposed. We investigated several
that are potentially useful in massively parallel stochas-
tic simulations under the MRIP scenario. L’Ecuyer’s
MRG32k3a PRNG is a large period linear generator. It
achieves its large period and good randomness by com-
bining several Multiple Recursive Generators and is par-
allelized by the cycle splitting paradigm. Matsumoto
and Nishimura’s Dynamic Creation generates indepen-
dent Mersenne Twister PRNGs by parameterizing the
matrix A in recurrence (14). Mascagni and Srinivasan’s
parameterization of the Multiplicative Lagged-Fibonacci
Generator is implemented within the SPRNG library and
is based on seed parameterization. We also consider
the Explicit Inversive Congruential Generators as imple-
mented within the pLab’s PRNG library. However, de-
spite excellent randomness properties, the last class of
PRNGs is significantly slower than the other three gen-
erators considered.

The generators were tested for initialization and gen-
eration speed to assess the efficiency of current imple-
mentations. Initialization was completed most quickly
by the Multiplicative lagged-Fibonacci Generator and
most slowly by Dynamic Creation. Generation of num-
bers was performed most quickly by Dynamic Creation’s
Mersenne Twisters and most slowly by the Explicit Inver-
sive Congruential Generator.

5 ACKNOWLEDGMENTS
This work was supported by the University of Canter-
bury, New Zealand, Summer Scholarship (U1042). The
author(s) wish to thank Makoto Matsumoto and Pierre
L’Ecuyer for their correspondence assisting the writing
of this report. The first author would like to thank his
parents for their encouragement and support and Jennifer
for her inspiration and understanding.

References
B.F. Green, J., Smith, J. E. K. & Klem, L. 1959, ‘Empir-

ical tests of an additive random number generator’,
J. ACM 6(4), 527–537.

Eichenauer-Herrmann, J. 1993, ‘Statistical independence
of a new class of inversive congruential pseudoran-
dom numbers’, Math. Comp. 60, 375–384.

Eichenauer, J. & Lehn, J. 1986, ‘A non-linear congruen-
tial pseudo random number generator’, Statist. Pa-
pers 27, 315–326.

Fischer, G., Carmon, Z., Ariely, D., Zauberman, G. &
L’Ecuyer, P. 1999, ‘Good parameters and imple-
mentations for combined multiple recursive ran-
dom number generators’, Operations Research
47(1), 159–164.

G. Ewing, D. McNickle, K. P. 1997, Multiple replications
in parallel: Distributed generation of data for speed-
ing up quantitative stochastic simulation, in ‘Pro-
ceedings of 15th IMACS World Congress on Scien-
tific Computation, Modelling and Applied Mathe-
matics’, Berlin, pp. 379–402.

G.C.Ewing, K. & D.McNickle 1999, Akaroa-2: Exploit-
ing network computing by distributing stochastic
simulation, in ‘Proceedings of European Simulation
Multiconference ESM’99’, Int. Society of Com-
puter Simulation, Warsaw, Poland, pp. 175–181.

Grube, A. 1973, ‘Mehrfach rekursiv-erzeugte pseudo-
zufallszahlen’, Zeitschrift für angewandte Mathe-
matik und Mechanik 53, T223–T225.

Hellekalek, P. 1995, Inversive pseudorandom number
generators: concepts, results, and links, in C. Alex-
opoulos, K. Kang, W. Lilegdon & D. Goldsman,
eds, ‘Proceedings of the 1995 Winter Simulation
Conference’, pp. 255–262.

Hellekalek, P. 1998, Good random number genera-
tors are (not so) easy to find, in ‘Selected papers
from the 2nd IMACS symposium on Mathemat-
ical Modelling—2nd MATHMOD’, Elsevier Sci-
ence Publishers B. V., pp. 485–505.

Knuth, D. 1997, The art of computer programming,
volume 2 (3rd ed.): seminumerical algorithms,
Addison-Wesley Longman Publishing Co., Inc.

L’Ecuyer, P. 1996, ‘Combined multiple recursive genera-
tors’, Operations Research 44(5), 816–822.

L’Ecuyer, P. 2006, ‘http://www.iro.umontreal.ca/ lecuyer/’.

L’Ecuyer, P., Simard, R., Chen, E. & Kelton, W. 2001,
‘An object-oriented randomnumber package with
many long streams and substreams’.

Lehmer, D. H. 1951, Mathematcial methods in large-
scale computing units, in ‘Proc. 2nd Symp. on
Large-Scale Digital Calculating Machinery’, Har-
vard University Press, Cambridge, Mass., pp. 141–
146.

Lewis, T. G. & Payne, W. H. 1973, ‘Generalized feedback
shift register pseudorandom number algorithm’, J.
ACM 20(3), 456–468.

M. Mascagni, S.A. Cuccaro, D. P. & Robinson, M. L.
1995, ‘A fast, high quality, and reproducible parallel
lagged-fibonacci pseudorandom number generator’,
Computational Physics 119, 211–219.

Makino, J. 1994, ‘Lagged-fibonacci random number gen-
erators on parallel computers’, Parallel Computing
20, 1357–1367.

Marsaglia, G. 1995, Diehard software package.
ftp://stat.fsu.edu/pub/diehard.

Mascagni, M. 2005, ‘The scalable parallel random num-
ber generators library (sprng) for asci monte carlo
computations’. http://sprng.cs.fsu.edu/.

Mascagni, M. & Chi, H. 2004, ‘Parallel linear congruen-
tial generators with sophie-germain moduli’, Paral-
lel Computing 30, 1217–1231.

Mascagni, M. & Srinivasan, A. 2000, ‘Sprng: A scal-
able library for pseudorandom number genera-
tion’, ACM Transactions on Mathematical Software
26(3), 436–461.

Mascagni, M. & Srinivasan, A. 2004, ‘Parameterizing
parallel multiplicative lagged-fibonacci generators’,
Parallel Computing 30, 899–916.

Matsumoto, M. 2004, ‘http://www.math.sci.hiroshima-
u.ac.jp/ m-mat/eindex.html’.

Matsumoto, M. & Kurita, Y. 1992, ‘Twisted gfsr
generators’, ACM Trans. Model. Comput. Simul.
2(3), 179–194.

Matsumoto, M. & Kurita, Y. 1994, ‘Twisted gfsr gen-
erators ii’, ACM Trans. Model. Comput. Simul.
4(3), 254–266.

Matsumoto, M. & Nishimura, T. 1998a, Dynamic
creation of pseudorandom number generators, in
H.Niederreiter & J.Spanier, eds, ‘Monte Carlo and
Quasi-Monte Carlo Methods’, pp. 56–69.

Matsumoto, M. & Nishimura, T. 1998b, ‘Mersenne
twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator’, ACM
Trans. Model. Comput. Simul. 8(1), 3–30.

Panneton, F. & L’Ecuyer, P. 2005, ‘Improved long-period
generators based on linear recurrences modulo 2’,
ACM Transactions on Mathematical Software - To
Appear .

pLab 2004, http://random.mat.sbg.ac.at/.

AUTHOR BIOGRAPHIES
MARCUS SCHOO holds a BSc (Math-
ematics and Computer Science) from the
University of Canterbury, New Zealand.
He is currently studying toward a BSc
(Honours)(Computer Science), also at the
University of Canterbury. His current re-
search interests are in the area of pseudo-

random number generators for parallel simulation and in
the application of motion capture data in robotics.

DONALD C. MCNICKLE is an Asso-
ciate Professor in the Management De-
partment at the University of Canterbury.
His research interests include queueing
theory, networks of queues and statisti-
cal aspects of stochastic simulation. He
is a member of INFORMS and the Oper-

ational Research Society.

KRZYSZTOF PAWLIKOWSKI
is a Professor in Computer Science
at the University of Canterbury, in
Christchurch, New Zealand. The author
of over 130 research papers and four
books; he has given invited lectures
at over 80 universities and research

institutes worldwide. His research interests include
performance modelling of telecommunication networks,
discrete-event simulation and distributed processing.
Senior Member of IEEE, member of ACM and SMSI.

