

AKAROA2: A CONTROLLER OF DISCRETE-EVENT SIMULATION
WHICH EXPLOITS THE DISTRIBUTED COMPUTING RESOURCES OF

NETWORKS

Don McNickle Krzysztof Pawlikowski and Greg Ewing
Management Department Computer Science and Software Engineering
University of Canterbury University of Canterbury

Private Bag 4800, Christchurch Private Bag 4800, Christchurch
New Zealand

Don.McNickle@canterbury.ac.nz
New Zealand

Krys.Pawlikowski@canterbury.ac.nz

KEYWORDS
Discrete-event simulation, sequential simulation,
statistical analysis, multiple replications in parallel.

ABSTRACT

This paper describes and summarises our research on
enhancing the methodology of automated discrete-event
simulation and its implementation in Akaroa2, a
controller of such simulation studies. Akaroa2 addresses
two major practical issues in the application of
stochastic simulation in performance evaluation studies
of complex dynamic systems: (i) accuracy of the final
results; and (ii) the length of time required to achieve
these results. (i) is addressed by running simulations
sequentially, with on-line analysis of statistical errors
until these reach an acceptably low level. For (ii),
Akaroa2 launches multiple copies of a simulation
program on networked processors, applying the
Multiple Replications in Parallel (MRIP) scenario. In
MRIP the processors run independent replications,
generating statistically equivalent streams of simulation
output data. These data are fed to a global data analyser
responsible for analysis of the results and for stopping
the simulation. We outline main design issues of
Akaroa2, and detail some of the improvements and
extensions to this tool over the last 10 years.

INTRODUCTION

Quantitative discrete-event stochastic simulation is a
useful tool for studying performance of stochastic
dynamic systems, but it can consume much time and
computing resources. Even with today's high speed
processors, it is common for simulation jobs to take
hours or days to complete. Even then, the results may
not satisfy the decision-maker’s objectives unless a
proper experimental framework is set up which
guarantees the results with an appropriate degree of
accuracy.
 Processor speeds are increasing as technology
improves, but there are limits to the speed that can be
achieved with a single, serial processor. To overcome
these limits, parallel or distributed computation is

needed. Not only does this speed up the simulation
process, in the best case proportionally to the number of
processors used, but the reliability of the program can be
improved by placing less reliance on individual
processors.
 One approach to parallel simulation is to divide up the
simulation model and simulate parts of it on different
processors. However, depending on the nature of the
model it can be very difficult to find a way of dividing it
up, and if the model does not divide up readily, the
overhead of communication between dependent parts of
a given simulation model can even make simulation
longer. Akaroa2 takes a different approach, applying
multiple replications in parallel or MRIP. Instead of
dividing up the simulation model, multiple independent
instances of a given model are executed simultaneously
on different processors. These instances continuously
send output data (observations) back to a central
controller/analyzer, measuring the performance
parameters of interest. The central analyzer calculates
overall estimates from these observations, e.g. the mean
values of the parameters of interest. When it judges that
it has enough observations to form all estimates with the
required accuracy, it halts the simulation.
 Since the simulation replications run independently, n
copies of the simulation running on n processors will on
average produce observations at n times the rate of a
single copy. Therefore final results with an acceptably
small statistical error can be produced much faster than
from a single instance of the simulation. The total
speedup depends on the type of simulation (terminating
or steady-state), the type of estimators, and on the
method of estimation. A Truncated Amdahl’s Law
which captures this is formulated in Pawlikowski and
McNickle (2001).
 MRIP also provides some degree of fault tolerance. It
does not matter which instance of the simulation the
estimates come from, so if one processor fails, the
program it was running can be restarted and the
simulation continued without penalty. Alternatively, the
simulation will simply continue with one less processor
and take proportionately longer to complete. If a
simulation is taking an unacceptably long time to
complete, additional processors can be called in at any
time (note the “Add Engines” button in Figure 3.)

mailto:Krys.Pawlikowski@canterbury.ac.nz

PROGRAM ARCHITECTURE

The main components of Akaroa2 are the akmaster, the
akslaves, akrun and the simulation engines. The
relationships between these components are shown in
Figure 1.

Figure 1. The basic structure of Akaroa2

 The akmaster process coordinates the activity of all
other processes initiated by Akaroa2. It launches new
simulations, maintains state information about running
simulations, performs global analysis of the data
produced by simulation engines, and makes simulation
stopping decisions.
 Akslave processes (not shown) run on the hosts which
are to run the simulation engines. The only function of
the akslave is to launch simulation engine(s) on its host
as directed by the akmaster. The akslave processes have
been introduced because other methods of launching
remote processes under UNIX (for example, by using
rsh) tend to be slow and unreliable.
 The akrun program is used to initiate a simulation. It
first contacts the akmaster process, obtaining its host
name and port number from a file left by the akmaster
in the user’s home directory. For each simulation engine
requested, the akmaster chooses a host from among
those hosts on the LAN which are running akslave
processes. It instructs the akslave on that host to launch
an instance of the user’s simulation program, passing on
any specified arguments. The first time the simulation
program calls one of the Akaroa2 library routines, the
simulation engine opens a connection to the akmaster
process and identifies the simulation to which it
belongs, so that the akmaster can associate the
connection with the appropriate simulation data
structure.
 Each engine performs sequential analysis of its own
data to form a local estimate of each performance
measure. At more or less regularly determined
checkpoints, the engine sends its local estimates to the
akmaster process, where the local estimates of each

performance measure from all engines are combined to
give a set of global estimates.
 Whenever a new global estimate is calculated, the
relative half-width of its confidence interval at the
requested confidence level is computed, and compared
with the requested precision. When the precision of all
analysed performance measures becomes satisfactory,
the akmaster terminates all the simulation engines, and
sends the final global estimates to the akrun process,
which in turn reports them to the user. Several different
simulation experiments may be run simultaneously,
using separate akrun processes. They may launch
instances on the same or different hosts.
 In Akaroa2, all interprocess communication is via
TCP/IP stream connections, which provide reliable,
sequenced, non-duplicated delivery of messages.
 An earlier version, Akaroa, used UDP/IP datagrams to
communicate between processes. Since the UDP
protocol does not guarantee reliable packet delivery,
Akaroa spent a great deal of effort attempting to deal
with issues of packet loss and duplication. The system
was unreliable and difficult to manage. If a process
failed to respond within an arbitrary timeout, it was hard
to tell whether it had died or was simply taking longer
than usual to respond.
 The program is implemented in the GNU dialect of
C++, and has been tested at the University of
Canterbury under the SunOS 4, Solaris 2 and Linux
operating systems. Further operating details can be
found in the manual, downloadable from the Akaroa2
website at http://www.akaroa2.canterbury.ac.nz/.

The User Interface

Originally, Akaroa2 could only be run by running akrun
directly with command-line arguments. Now a graphical
user interface akgui is provided. The main screen for the
akmaster process is shown in Figure 2. This shows a
single simulation experiment, being run on 5 engines.

Figure 2. The Main Screen for the Akmaster Process

 The progress of each simulation being executed is
shown in a progress window (Figure 3). The bar graph
shows that the relative precision of (in this case a single)
performance measure is currently about 0.2, converging
towards the requested level (in this case a 95%

http://www.akaroa2.canterbury.ac.nz/

confidence level being estimated to a relative precision
of 0.05.)

Figure 3. The Akgui Progress Window

IMPROVEMENTS TO INTERFACES AND
OPERABILITY

Interfaces with Other Simulation Packages
A popular application of Akaroa is to use it as a
controller controlling execution of simulations based on
models built with help of other simulation packages.
Currently interfaces allow linking Akaroa2 with
Ptolemy Classic, the Network Simulator NS2, and
OMNeT++. Details of these interfaces can be found
from the Akaroa2 website.

Simulation on wide area networks

While Akaroa2 is normally used on a local network,
there is nothing in principle to prevent a simulation
from being distributed over any set of hosts that can
reach each other via the Internet. The communication
between processes in an Akaroa2 simulation only
requires a very low bandwidth, and is mostly one-
directional, so network delays have little influence. In
theory, therefore, there should be little difference in
performance between using a local, or a wide area
network. To test this, Akaroa2 simulations have been
run on geographically separated PlanetLab research
network nodes (Yasmeen, Ewing, Pawlikowski, and
Yamada, 2009). Because of the use of TCP/IP as the
communication protocol implementation of this was
straightforward. Apart from a slight increase in the time
taken to start the simulation up, there was no
discernable difference in simulation speed, as predicted.

IMPROVEMENTS TO SIMULATION AND
STATISTICAL ASPECTS

The basic approaches to statistical problems of
estimation and control, which were adopted in Akaroa2,
are described in Pawlikowski (1990). Further details are

given in Ewing, Pawlikowski and McNickle (1999).
However there have been a number of substantial
modifications since these papers.

The Internal Simulation Routines

The simulation library in Akaro2 is now based on a
process-interaction approach. This replaces the previous
event-scheduling approach, although this remains
available. A Process Manager creates processes for each
class of entities, describing the life cycle through which
these entities go. The class Resource is used to
represent finite classes of (usually permanent) entities,
to model competition for access to the resource. The
class Queue implements a queue of entities of some
type, which entities join and leave, with priorities if
desired. The usual range of random-variate generators
are available. More complex simulations can be written
in any language as long as the program is capable of
calling routines written in C. Akaroa2 simply picks up,
analyses and controls the output observations from this
program.

Random Number Generation

In MRIP, each simulation engine must use pseudo-
random numbers (PRNs) independent from those used
by other engines. Consequently, in Akaroa2, random
number generation is not left to the user’s simulation
program. Instead, the akmaster process is given full
control over PRNs used by different simulation engines.
Currently Akaroa2 uses a Combined Multiple Recursive
PRN Generator with a period of approximately 2191.
This sequence is divided into blocks of 2128, and
different blocks of PRNs are assigned to different
simulation engines. Thus, one could concurrently use up
to 267 replications, providing that none of them requires
more than 2128 PRNs. If fewer replications are used and
a simulation engine requires more PRNs, it would
receive next block of PRNs. The particular generator
used by Akaroa2 is known as MRG32k3a (see, for
example L’Ecuyer (1999)). Since it would be very
inefficient for a simulation engine to have to
communicate with the akmaster process every time it
wanted a PRN, each engine generates its assigned block
of PRNs by itself, initialising its own copy of the
generator from the starting values assigned by the
akmaster.

Confidence Interval Estimation

Akaroa2 provides two methods of sequential analysis of
output data from steady-state simulation: an automated
non-overlapping Batch Means algorithm, and a Spectral
Analysis method based on Heidelberger and Welch’s
(1981, 1983) results. Its implementation in MRIP is
described in Ewing, McNickle and Pawlikowski (2002).
Some further modifications which improve its
performance for sequential analysis are described in
McNickle, Ewing and Pawlikowski (2004). Figures 4

http://ptolemy.eecs.berkeley.edu/ptolemyclassic/body.htm
http://www.isi.edu/nsnam/ns/
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

and 5 compare the results for simulating an M/M/1
queue using our Batch Means method (Figure 4) and the
modified version of Spectral Analysis (Figure 5). What
is plotted here is the coverage – that is the actual
estimated size of (in this case supposedly 95%)
confidence intervals for the mean waiting time,
produced by calculating from typically 10,000 separate
experiments, the fraction of confidence intervals that
actually contain the true mean waiting time. The fall-off
in the batch means coverage with load can be entirely
explained by correlation between the batch means, (the
dashed lines in Figure 4) show the theoretical loss of
coverage) which remains a risk with most batch-mean
methods. In contrast the coverage from modified
Spectral Analysis is almost always at the level specified.
Thus our research leads us to strongly favour the
Spectral Analysis approach, see also Pawlikowski,
McNickle and Ewing, (1998).

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Figure 4. Coverage with Batch Means

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Figure 5. Coverage with Modified Spectral Analysis

An additional attraction of Spectral Analysis is that the
same algorithm applies exactly to batched data. This
batching of data reduces storage and communications
costs.

Transient Period Detection

When Akaroa2 controls a steady-state simulation, an
automated method is used to determine the length of the
initial transient period. It begins with a heuristic
proposed by Gafarian, Anker and Morisaku (1978) to
decide when to start testing for stationarity. Its use in a
sequential context is described in detail in Pawlikowski.

In this heuristic, the length of initial transient period is
first taken to be over when the sequence has crossed its
running mean 25 times. Then a sequential version of
Schruben’s test (Schruben, Singh and Tierney, 1983) is
used to test for stationarity. If the null hypothesis of
stationarity is rejected, the length of the potential
transient period is doubled and the test repeated
(Pawlikowski). Comparisons with a limited range of
other transient deletion methods can be found in
Pawlikowski, Stacey and McNickle (1993) which show
that this method, although simple, does appear to work
well, at least for basic queueing models.
 However detecting the length of the transient period
remains an uncertain area of discrete-event simulation
theory. A large number of methods for selecting the
number of observations to delete, and for testing if the
system is adequately close to “steady state”, have been
proposed. Hoad, Robinson and Davies (2008) list 42
methods. Some of these proposals appear to have had
limited testing, so their validity remains in question.
While our current method appears to be adequate for
most simple models, we are considering a sequential
version of MSER-5, given its good performance
reported in Hoad, Robinson and Davies.

Estimating Quantiles

Mean values provide very limited information about the
analysed processes. Much more meaningful insight is
provided by quantiles, especially if several quantiles can
be estimated simultaneously. For example, 90th or 95th
percentiles are often specified by decision makers as the
criteria of quality when considering delays or overflow
probabilities in manufacturing, customer service,
emergency response or telecommunication systems.
Estimation of quantiles is yet another order of
magnitude harder than estimation of means or variances,
as now large amounts of data need to be stored and
efficiently sorted. As well as the usual problems due to
serial correlation of output, the estimates of multiple
quantiles estimated from a single run will also be
correlated. Thus, the use of independent replications on
this problem is especially attractive.
 Lee, Pawlikowski and McNickle (2000) reports on
using the existing methods in Akaroa2 to directly
estimate quantiles, with reasonable success. However a
more advanced method is described below.

Avoiding Premature Stopping

A chronic problem of sequential simulation is that some
of the simulation experiments may stop with an
insufficient number of observations because, by chance,
the required accuracy is apparently temporarily attained.
As a result the actual precision of the results obtained is
less than specified.
 Figure 6 illustrates the problem. It plots the estimated
relative precision of a simulation estimating the mean
waiting time in a queue, against the (geometric)

checkpoint number. The horizontal lines show stopping
criteria of relative precisions of 0.1 and 0.05. Using a
relative precision of 0.1 would result in the simulation
very nearly stopping at about the 30th checkpoint,
whereas data from at least 200 checkpoints are needed.
It is also worth noting, as Figure 6 suggests, that this
problem is reduced if very high accuracy (low relative
precision) is specified – note how the eventual
convergence to a relative precision of 0.05 is much less
erratic than that to 0.1. High accuracy implies a large
amount of data of course, so MRIP has a valuable role
in ameliorating this problem by providing large
amounts of data, and hence accurate and reliable results,
in reasonable elapsed time.

200 400 600 800 1000
0.0

0.2

0.4

Figure 6. The Risk of Premature Stopping in
Sequential Simulation

A recent study (McNickle, Pawlikowski and Ewing,
2010) has suggested that at the run lengths required by
common levels of accuracy, the bias in the mean may be
negligible. However the coverage can be seriously
affected due to prematurely stopped runs. Using a
reliable transient deletion technique, and less certainly,
initial loading, turns out to help here. The improvements
to the Spectral Analysis technique in McNickle,
Pawlikowski and Ewing (2004) also help with this
problem. In addition a range of simple rules of thumb
are described in Lee, Pawlikowski and McNickle
(1999) that make use of the multiple replications
provided by Akaroa2. The best of these (in its simplest
form: take the values from the longest of a number of
completely independent runs) has been implemented in
the program.

IMPROVEMENTS CURRENTLY IN PROGRESS

Quantile Estimation

In Eickhoff, Pawlikowski and McNickle (2007a) two
methods for estimation of multiple quantiles using

parallel replications on networks of computers are
described (see also Eickhoff, McNickle and
Pawlikowski, 2006.) These can be used to
simultaneously estimate multiple quantiles, with the set
of quantiles to be estimated selected automatically if
required. They are in the process of being implemented
in a newer version of our simulation controller.

Transient Detection

Almost all methods for detecting the initial transient
have been tested on mean values only. Once we move to
other measures, demonstrating mean-stationarity may
not be enough to determine an appropriate transient
period to delete, and methods that demonstrate
stationarity in distribution are required. A distribution-
based method using the techniques reported in Eickhoff,
Pawlikowski and McNickle (2007a), which specifically
makes use of parallel replications, is under
development.

Estimating Variances

Current analysis of output data from discrete event
simulation focuses almost exclusively on the estimation
of mean values, largely for reasons of speed, ease of
analysis and minimal data storage requirements.
However there are a number of applications for which
we require the variance – for example jitter in video
streams, safety stock in inventory problems, etc. In
Schmidt, Pawlikowski and McNickle (2009) three
methods of point and interval estimation of the steady-
state variance are considered. One, based on splitting of
sums of squares, appears to be superior. Estimating
variances involves considerably more observations than
estimating means. Thus, selecting estimators with good
performance characteristics, and using MRIP, is even
more important.

CONCLUSIONS

Akaroa2 is downloadable for teaching, and for non-
profit research (by universities only) from
http://www.akaroa2.canterbury.ac.nz/. It has been
downloaded more than 1800 times since the counter was
introduced in 2001. Without requiring the use of any
parallel programming techniques, it automatically
distributes simulation models over an arbitrary number
of computers linked by a network, and controls the
simulation run length so as to produce final results
having a specified precision, both in the case of
terminating and steady-state simulation.

REFERENCES
Eickhoff, M., McNickle, D. and Pawlikowski, K. 2006.

“Analysis of the Time Evolution of Quantiles in
Simulation”, Int. J. Simulation 7 (6) (2006), 44-55.

Eickhoff, M., Pawlikowski, K. and McNickle, D. 2007a.
“Detecting the Duration of Initial Transient in Steady State
Simulation of Arbitrary Performance Measures”, in

http://www.akaroa2.canterbury.ac.nz/

Proceedings ACM ValueTools07 (23-25 October 2007),
Nantes, France.

Pawlikowski, K., Schoo, M. and McNickle, D. 2006. “Modern
Generators of Multiple Streams of Pseudo-Random
Numbers”, in Proc. Int. Mediterranean Modelling
Multiconference (ESM06), Barcelona, 553-559.

Eickhoff, M., Pawlikowski, K. and McNickle, D. 2007b.
“Using Parallel Replications for Sequential Estimation of
Multiple Steady State Quantiles”, in Proceedings ACM
ValueTools07, (23-25 October 2007), Nantes, France.

Pawlikowski, K. 1990. “Steady State Simulation of Queueing
Processes: a Survey of Problems and Solutions”, ACM
Computing Surveys, (22, June 1990) 123-170. Ewing, G., McNickle, D. and Pawlikowski, K. 2002. “Spectral

Analysis for Confidence Interval Estimation under
Multiple Replications in Parallel”, in Proc. 14th European
Simulation Symposium, Dresden (October 2002), 52-61.

Schmidt, A., Pawlikowski, K. and McNickle, D. 2009.
“Sequential Estimation of the Steady-State Variance in
Discrete Event Simulation”, in Proc. ECMS 2009, 630-
635. Ewing, G., Pawlikowski, K. and McNickle, D. 1999. Akaroa2:

“Exploiting Network Computing by Distributed Stochastic
Simulation” in Proc. 13th European Simulation
Multiconference, Warsaw, Poland (June 1999), SCSC,
175-81.

 Schruben, L., Singh, H. and Tierney, L. 1983. “Optimal Tests
for Initialisation Bias in Simulation Output”, Operations
Research, 31(6) (1983) 1167-1178.

Yasmeen, F., Ewing, G., Pawlikowski, K. and Yamada, S.
2009 “Distributing Akaroa2 on PlanetLab”. Proceedings of
IEICE General Conference, Matsuyama City, Japan,
March 17-20, 2009.

Gafarian, A. V., Ancker, C. J. and Morisaku, T. 1978.
“Evaluation of Commonly Used Rules for Detecting
“Steady State” in Computer Simulation”, Naval Research
Logistics Quarterly, 78 (1978) 511-529.

Heidelberger, P. and Welch, P. D. 1981. “A Spectral Method
for Confidence Interval Generation and Run Length
Control in Simulations”, Communications of the ACM,
24(4) (April 1981), 233-245.

AUTHOR BIOGRAPHIES

DON MCNICKLE is an Associate
Professor of Management Science in the
Department of Management at the
University of Canterbury. His research
interests include queueing theory;
networks of queues and statistical
aspects of stochastic simulation. He is a

full member of INFORMS.

Heidelberger, P. and Welch, P. D. 1983 “Simulation Run
Length Control in the Presence of an Initial Transient”,
Operations Research, 31 (1983) 1109-1144.

Hoad, K., Robinson, S. and Davies, R. 2008 “Automating
Warm-up Length Estimation”, in Proc. 2008 Winter
Simulation Conference, S.J. Mason et al. eds., (2008) 532-
540.

 L’Ecuyer, P. 1999. “Good Parameters and Implementations
for Combined Multiple Recursive Random Number
Generators”, Operations Research, 47, 1, Jan-Feb 1999,
159-164.

GREG EWING is an Adjunct
Research Associate in the Department
of Computer Science and Software
Engineering at Canterbury; where
received a Ph.D. His research interests
include simulation; distributed systems;
programming languages, 3D graphics
and graphical user interfaces. He has

made contributions to the Python programming
language.

Lee, J.-S. R., Pawlikowski, K. and McNickle, D. 1999
“Sequential Steady-State Simulation: Rules of Thumb for
Improving the Accuracy of the Final Results”, in Proc.
ESS99 (Erlangen, Germany, Oct 26-28 1999), 618-622.

Lee, J.-S. R., Pawlikowski K. and McNickle, D. 2000 “Initial
Transient Period Detection for Steady-State Quantile
Estimation”, in Proc. Summer Computer Simulation
Conference SCSC'2000, Vancouver, Canada, International
Society for Computer Simulation, San Diego, July 16-20,
2000, Paper #S213, 1-6

KRZYSZTOF PAWLIKOWSKI is a
Professor of Computer Science at the
University of Canterbury. His research
interests include quantitative stochastic
simulation; and performance modelling
of telecommunication networks. He
received a PhD in Computer

Engineering from the Technical University of Gdansk,
Poland. He is a Senior Member of IEEE and a member
of SCS and ACM. His web page is
<http://www.cosc.canterbury. ac.nz/"'krys/>.

McNickle, D., Pawlikowski, K. and Ewing, G. 2004 “Refining
Spectral Analysis for Confidence Interval Estimation in
Sequential Simulation” in Proceedings of the ESS2004,
Budapest, Hungary Oct 2004, 99-103.

McNickle, D., Ewing, G. and Pawlikowski, K. 2010. “Some
Effects of Transient Deletion on Sequential Steady-State
Simulation”, to appear in Simulation Modelling Practice
and Theory, paper SIMPAT864.

Pawlikowski K., Stacey, C. and McNickle, D. 1993.
“Detection and Significance of the Initial Transient Period
in Quantitative Steady-State Simulation”, in Proc. Eighth
Australian Teletraffic Research Seminar, RMIT
Melbourne, (6-8 December 1993) 193-202.

ACKNOWLEDGEMENT

Pawlikowski, K., McNickle, D. and Ewing, G. 1998.
“Coverage of Confidence Intervals from Sequential
Steady-State Simulation”, Simulation Practice and
Theory, 6 (1998), 255-267.

This research was supported in part by grants from the
College of Business and Economics, and the College of
Engineering, University of Canterbury. Pawlikowski. K. And McNickle, D. 2001. “Speeding up

Stochastic Discrete-Event Simulation”, in Proc. European
Simulation Symposium, ESS’01, Marseille, France, 18-20
October, ISCS Press, 132-138.

http://www.planetlabnz.canterbury.ac.nz/docs/ieice09_yasmeen.pdf

