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ABSTRACT 

This paper describes and summarises our research on 
enhancing the methodology of automated discrete-event 
simulation and its implementation in Akaroa2, a 
controller of such simulation studies. Akaroa2 addresses 
two major practical issues in the application of 
stochastic simulation in performance evaluation studies 
of complex dynamic systems: (i) accuracy of the final 
results; and (ii) the length of time required to achieve 
these results. (i) is addressed by running simulations 
sequentially, with on-line analysis of statistical errors 
until these reach an acceptably low level. For (ii), 
Akaroa2 launches multiple copies of a simulation 
program on networked processors, applying the 
Multiple Replications in Parallel (MRIP) scenario. In 
MRIP the processors run independent replications, 
generating statistically equivalent streams of simulation 
output data. These data are fed to a global data analyser 
responsible for analysis of the results and for stopping 
the simulation. We outline main design issues of 
Akaroa2, and detail some of the improvements and 
extensions to this tool over the last 10 years. 

 
INTRODUCTION 

Quantitative discrete-event stochastic simulation is a 
useful tool for studying performance of stochastic 
dynamic systems, but it can consume much time and 
computing resources. Even with today's high speed 
processors, it is common for simulation jobs to take 
hours or days to complete.  Even then, the results may 
not satisfy the decision-maker’s objectives unless a 
proper experimental framework is set up which 
guarantees the results with an appropriate degree of 
accuracy. 
   Processor speeds are increasing as technology 
improves, but there are limits to the speed that can be 
achieved with a single, serial processor. To overcome 
these limits, parallel or distributed computation is 

needed. Not only does this speed up the simulation 
process, in the best case proportionally to the number of 
processors used, but the reliability of the program can be 
improved by placing less reliance on individual 
processors.  
   One approach to parallel simulation is to divide up the 
simulation model and simulate parts of it on different 
processors. However, depending on the nature of the 
model it can be very difficult to find a way of dividing it 
up, and if the model does not divide up readily, the 
overhead of communication between dependent parts of 
a given simulation model can even make simulation 
longer. Akaroa2 takes a different approach, applying 
multiple replications in parallel or MRIP. Instead of 
dividing up the simulation model, multiple independent 
instances of a given model are executed simultaneously 
on different processors. These instances continuously 
send output data (observations) back to a central 
controller/analyzer, measuring the performance 
parameters of interest. The central analyzer calculates 
overall estimates from these observations, e.g. the mean 
values of the parameters of interest. When it judges that 
it has enough observations to form all estimates with the 
required accuracy, it halts the simulation.  
   Since the simulation replications run independently, n 
copies of the simulation running on n processors will on 
average produce observations at n times the rate of a 
single copy. Therefore final results with an acceptably 
small statistical error can be produced much faster than 
from a single instance of the simulation. The total 
speedup depends on the type of simulation (terminating 
or steady-state), the type of estimators, and on the 
method of estimation.  A Truncated Amdahl’s Law 
which captures this is formulated in Pawlikowski and 
McNickle (2001).  
   MRIP also provides some degree of fault tolerance. It 
does not matter which instance of the simulation the 
estimates come from, so if one processor fails, the 
program it was running can be restarted and the 
simulation continued without penalty. Alternatively, the 
simulation will simply continue with one less processor 
and take proportionately longer to complete. If a 
simulation is taking an unacceptably long time to 
complete, additional processors can be called in at any 
time (note the “Add Engines” button in Figure 3.) 
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PROGRAM ARCHITECTURE 

The main components of Akaroa2 are the akmaster, the 
akslaves, akrun and the simulation engines. The 
relationships between these components are shown in 
Figure 1.  

 
Figure 1. The basic structure of Akaroa2 

 
   The akmaster process coordinates the activity of all 
other processes initiated by Akaroa2. It launches new 
simulations, maintains state information about running 
simulations, performs global analysis of the data 
produced by simulation engines, and makes simulation 
stopping decisions.  
   Akslave processes (not shown) run on the hosts which 
are to run the simulation engines. The only function of 
the akslave is to launch simulation engine(s) on its host 
as directed by the akmaster. The akslave processes have 
been introduced because other methods of launching 
remote processes under UNIX (for example, by using 
rsh) tend to be slow and unreliable.  
   The akrun program is used to initiate a simulation. It 
first contacts the akmaster process, obtaining its host 
name and port number from a file left by the akmaster 
in the user’s home directory. For each simulation engine 
requested, the akmaster chooses a host from among 
those hosts on the LAN which are running akslave 
processes. It instructs the akslave on that host to launch 
an instance of the user’s simulation program, passing on 
any specified arguments. The first time the simulation 
program calls one of the Akaroa2 library routines, the 
simulation engine opens a connection to the akmaster 
process and identifies the simulation to which it 
belongs, so that the akmaster can associate the 
connection with the appropriate simulation data 
structure.  
   Each engine performs sequential analysis of its own 
data to form a local estimate of each performance 
measure. At more or less regularly determined 
checkpoints, the engine sends its local estimates to the 
akmaster process, where the local estimates of each 

performance measure from all engines are combined to 
give a set of global estimates.  
   Whenever a new global estimate is calculated, the 
relative half-width of its confidence interval at the 
requested confidence level is computed, and compared 
with the requested precision. When the precision of all 
analysed performance measures becomes satisfactory, 
the akmaster terminates all the simulation engines, and 
sends the final global estimates to the akrun process, 
which in turn reports them to the user. Several different 
simulation experiments may be run simultaneously, 
using separate akrun processes. They may launch 
instances on the same or different hosts. 
   In Akaroa2, all interprocess communication is via 
TCP/IP stream connections, which provide reliable, 
sequenced, non-duplicated delivery of messages. 
   An earlier version, Akaroa, used UDP/IP datagrams to 
communicate between processes. Since the UDP 
protocol does not guarantee reliable packet delivery, 
Akaroa spent a great deal of effort attempting to deal 
with issues of packet loss and duplication. The system 
was unreliable and difficult to manage. If a process 
failed to respond within an arbitrary timeout, it was hard 
to tell whether it had died or was simply taking longer 
than usual to respond.  
   The program is implemented in the GNU dialect of 
C++, and has been tested at the University of 
Canterbury under the SunOS 4, Solaris 2 and Linux 
operating systems.  Further operating details can be 
found in the manual, downloadable from the Akaroa2 
website at http://www.akaroa2.canterbury.ac.nz/. 
 
The User Interface 

Originally, Akaroa2 could only be run by running akrun 
directly with command-line arguments. Now a graphical 
user interface akgui is provided. The main screen for the 
akmaster process is shown in Figure 2. This shows a 
single simulation experiment, being run on 5 engines.  
 

 
Figure 2. The Main Screen for the Akmaster Process 

 
   The progress of each simulation being executed is 
shown in a progress window (Figure 3). The bar graph 
shows that the relative precision of (in this case a single) 
performance measure is currently about 0.2,  converging 
towards the requested level (in this case a 95% 
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confidence level being estimated to a relative precision 
of 0.05.) 
 

 
 

Figure 3. The Akgui Progress Window 
 
 
IMPROVEMENTS TO INTERFACES AND 
OPERABILITY 

Interfaces with Other Simulation Packages
A  popular  application  of  Akaroa  is  to  use  it  as  a
controller controlling execution of simulations based on 
models built with help of other simulation packages. 
Currently interfaces allow linking Akaroa2 with 
Ptolemy Classic, the Network Simulator NS2, and 
OMNeT++.  Details of these interfaces can be found 
from the Akaroa2 website. 
 
Simulation on wide area networks 

While Akaroa2 is normally used on a local network, 
there is nothing in principle to prevent a simulation 
from being distributed over any set of hosts that can 
reach each other via the Internet. The communication 
between processes in an Akaroa2 simulation only 
requires a very low bandwidth, and is mostly one-
directional, so network delays have little influence. In 
theory, therefore, there should be little difference in 
performance between using a local, or a wide area 
network. To test this, Akaroa2 simulations have been 
run on geographically separated PlanetLab research 
network nodes (Yasmeen, Ewing, Pawlikowski, and 
Yamada, 2009). Because of the use of TCP/IP as the 
communication protocol implementation of this was 
straightforward. Apart from a slight increase in the time 
taken to start the simulation up, there was no 
discernable difference in simulation speed, as predicted. 
 
IMPROVEMENTS TO SIMULATION AND 
STATISTICAL ASPECTS 
  
The basic approaches to statistical problems of 
estimation and control, which were adopted in Akaroa2, 
are described in Pawlikowski (1990). Further details are 

given in Ewing, Pawlikowski and McNickle (1999). 
However there have been a number of substantial 
modifications since these papers. 
 
The Internal Simulation Routines 

The simulation library in Akaro2 is now based on a 
process-interaction approach. This replaces the previous 
event-scheduling approach, although this remains 
available. A Process Manager creates processes for each 
class of entities, describing the life cycle through which 
these entities go.  The class Resource is used to 
represent finite classes of (usually permanent) entities, 
to model competition for access to the resource. The 
class Queue implements a queue of entities of some 
type, which entities join and leave, with priorities if 
desired. The usual range of random-variate generators 
are available. More complex simulations can be written 
in any language as long as the program is capable of 
calling routines written in C. Akaroa2 simply picks up, 
analyses and controls the output observations from this 
program. 
 
Random Number Generation 

In MRIP, each simulation engine must use pseudo-
random numbers (PRNs) independent from those used 
by other engines. Consequently, in Akaroa2, random 
number generation is not left to the user’s simulation 
program. Instead, the akmaster process is given full 
control over PRNs used by different simulation engines.  
Currently Akaroa2 uses a Combined Multiple Recursive 
PRN Generator with a period of approximately 2191.  
This sequence is divided into blocks of 2128, and 
different blocks of PRNs are assigned to different 
simulation engines. Thus, one could concurrently use up 
to 267 replications, providing that none of them requires 
more than 2128 PRNs. If fewer replications are used and 
a simulation engine requires more PRNs, it would 
receive next block of PRNs.  The particular generator 
used by Akaroa2 is known as MRG32k3a (see, for 
example L’Ecuyer (1999)). Since it would be very 
inefficient for a simulation engine to have to 
communicate with the akmaster process every time it 
wanted a PRN, each engine generates its assigned block 
of PRNs by itself, initialising its own copy of the 
generator from the starting values assigned by the 
akmaster.  
 
Confidence Interval Estimation 

Akaroa2 provides two methods of sequential analysis of 
output data from steady-state simulation: an automated 
non-overlapping Batch Means algorithm, and a Spectral 
Analysis method based on Heidelberger and Welch’s 
(1981, 1983) results. Its implementation in MRIP is 
described in Ewing, McNickle and Pawlikowski (2002). 
Some further modifications which improve its 
performance for sequential analysis are described in 
McNickle, Ewing and Pawlikowski (2004). Figures 4 
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and 5 compare the results for simulating an M/M/1 
queue using our Batch Means method (Figure 4) and the 
modified version of Spectral Analysis (Figure 5). What 
is plotted here is the coverage – that is the actual 
estimated size of (in this case supposedly 95%) 
confidence intervals for the mean waiting time, 
produced by calculating from typically 10,000 separate 
experiments, the fraction of confidence intervals that 
actually contain the true mean waiting time. The fall-off 
in the batch means coverage with load can be entirely 
explained by correlation between the batch means, (the 
dashed lines in Figure 4) show the theoretical loss of 
coverage) which remains a risk with most batch-mean 
methods. In contrast the coverage from modified 
Spectral Analysis is almost always at the level specified. 
Thus our research leads us to strongly favour the 
Spectral Analysis approach, see also Pawlikowski, 
McNickle and Ewing, (1998). 
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Figure 4. Coverage with Batch Means 
 

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.85

0.90

0.95

1.00

C
ov

er
ag

e

 
 
Figure 5. Coverage with Modified Spectral Analysis 

 
An additional attraction of Spectral Analysis is that the 
same algorithm applies exactly to batched data. This 
batching of data reduces storage and communications 
costs.  
 
Transient Period Detection 

When Akaroa2 controls a steady-state simulation, an 
automated method is used to determine the length of the 
initial transient period. It begins with a heuristic 
proposed by Gafarian, Anker and Morisaku (1978) to 
decide when to start testing for stationarity. Its use in a 
sequential context is described in detail in Pawlikowski. 

In this heuristic, the length of initial transient period is 
first taken to be over when the sequence has crossed its 
running mean 25 times. Then a sequential version of 
Schruben’s test (Schruben, Singh and Tierney, 1983) is 
used to test for stationarity. If the null hypothesis of 
stationarity is rejected, the length of the potential 
transient period is doubled and the test repeated 
(Pawlikowski). Comparisons with a limited range of 
other transient deletion methods can be found in 
Pawlikowski, Stacey and McNickle (1993) which show 
that this method, although simple, does appear to work 
well, at least for basic queueing models. 
   However detecting the length of the transient period 
remains an uncertain area of discrete-event simulation 
theory. A large number of methods for selecting the 
number of observations to delete, and for testing if the 
system is adequately close to “steady state”, have been 
proposed.  Hoad, Robinson and Davies (2008) list 42 
methods. Some of these proposals appear to have had 
limited testing, so their validity remains in question.  
While our current method appears to be adequate for 
most simple models, we are considering a sequential 
version of MSER-5, given its good performance 
reported in Hoad, Robinson and Davies. 
  
Estimating Quantiles 

Mean values provide very limited information about the 
analysed processes. Much more meaningful insight is 
provided by quantiles, especially if several quantiles can 
be estimated simultaneously. For example, 90th or 95th 
percentiles are often specified by decision makers as the 
criteria of quality when considering delays or overflow 
probabilities in manufacturing, customer service, 
emergency response or telecommunication systems. 
Estimation of quantiles is yet another order of 
magnitude harder than estimation of means or variances, 
as now large amounts of data need to be stored and 
efficiently sorted. As well as the usual problems due to 
serial correlation of output, the estimates of multiple 
quantiles estimated from a single run will also be 
correlated. Thus, the use of independent replications on 
this problem is especially attractive.  
   Lee, Pawlikowski and McNickle (2000) reports on 
using the existing methods in Akaroa2 to directly 
estimate quantiles, with reasonable success. However a 
more advanced method is described below. 
 
Avoiding Premature Stopping 

A chronic problem of sequential simulation is that some 
of the simulation experiments may stop with an 
insufficient number of observations because, by chance, 
the required accuracy is apparently temporarily attained. 
As a result the actual precision of the results obtained is 
less than specified. 
   Figure 6 illustrates the problem. It plots the estimated 
relative precision of a simulation estimating the mean 
waiting time in a queue, against the (geometric) 

 



checkpoint number. The horizontal lines show stopping 
criteria of relative precisions of 0.1 and 0.05. Using a 
relative precision of 0.1 would result in the simulation 
very nearly stopping at about the 30th checkpoint, 
whereas data from at least 200 checkpoints are needed.  
It is also worth noting, as Figure 6 suggests, that this 
problem is reduced if very high accuracy (low relative 
precision) is specified – note how the eventual 
convergence to a relative precision of 0.05 is much less 
erratic than that to 0.1. High accuracy implies a large 
amount of data of course, so MRIP has a valuable role 
in ameliorating this problem by providing large 
amounts of data, and hence accurate and reliable results, 
in reasonable elapsed time.    
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Figure 6. The Risk of Premature Stopping in 
Sequential Simulation 

 
A recent study (McNickle, Pawlikowski and Ewing, 
2010) has suggested that at the run lengths required by 
common levels of accuracy, the bias in the mean may be 
negligible. However the coverage can be seriously 
affected due to prematurely stopped runs.  Using a 
reliable transient deletion technique, and less certainly, 
initial loading, turns out to help here. The improvements 
to the Spectral Analysis technique in McNickle, 
Pawlikowski and Ewing (2004) also help with this 
problem. In addition a range of simple rules of thumb 
are described in Lee, Pawlikowski and McNickle 
(1999) that make use of the multiple replications 
provided by Akaroa2. The best of these (in its simplest 
form: take the values from the longest of a number of 
completely independent runs) has been implemented in 
the program.   
   
IMPROVEMENTS CURRENTLY IN PROGRESS 

Quantile Estimation 

In Eickhoff, Pawlikowski and McNickle (2007a) two 
methods for estimation of multiple quantiles using 

parallel replications on networks of computers are 
described (see also Eickhoff, McNickle and 
Pawlikowski, 2006.) These can be used to 
simultaneously estimate multiple quantiles, with the set 
of quantiles to be estimated selected automatically if 
required. They are in the process of being implemented 
in a newer version of our simulation controller. 
 
Transient Detection 

Almost all methods for detecting the initial transient 
have been tested on mean values only. Once we move to 
other measures, demonstrating mean-stationarity may 
not be enough to determine an appropriate transient 
period to delete, and methods that demonstrate 
stationarity in distribution are required. A distribution-
based method using the techniques reported in Eickhoff, 
Pawlikowski and McNickle (2007a), which specifically 
makes use of parallel replications, is under 
development. 
 
Estimating Variances 

Current analysis of output data from discrete event 
simulation focuses almost exclusively on the estimation 
of mean values, largely for reasons of speed, ease of 
analysis and minimal data storage requirements. 
However there are a number of applications for which 
we require the variance – for example jitter in video 
streams, safety stock in inventory problems, etc. In 
Schmidt, Pawlikowski and McNickle (2009) three 
methods of point and interval estimation of the steady-
state variance are considered. One, based on splitting of 
sums of squares, appears to be superior. Estimating 
variances involves considerably more observations than 
estimating means. Thus, selecting estimators with good 
performance characteristics, and using MRIP, is even 
more important. 
 
CONCLUSIONS 

Akaroa2 is downloadable for teaching, and for non-
profit research (by universities only) from 
http://www.akaroa2.canterbury.ac.nz/. It has been 
downloaded more than 1800 times since the counter was 
introduced in 2001. Without requiring the use of any 
parallel programming techniques, it automatically 
distributes simulation models over an arbitrary number 
of computers linked by a network, and controls the 
simulation run length so as to produce final results 
having a specified precision, both in the case of 
terminating and steady-state simulation. 
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