
 

FAST AUTOMATED ESTIMATION OF VARIANCE IN SEQUENTIAL 
DISCRETE EVENT STOCHASTIC SIMULATION 

   
Don McNickle Krzysztof Pawlikowski and Nelson Shaw 

Management Department Computer Science and Software Engineering 
University of Canterbury University of Canterbury 

Private Bag 4800, Christchurch Private Bag 4800, Christchurch 
New Zealand 

Don.McNickle@canterbury.ac.nz 
New Zealand 

Krys.Pawlikowski@canterbury.ac.nz 
Nelson.Shaw@pg.canterbury.ac.nz 

  
 
KEYWORDS 
On-line variance estimation; Quantitative discrete event 
simulation; Sequential simulation. 
 
 
ABSTRACT 

On-line analysis of output data from discrete event 
stochastic simulation focuses almost entirely on 
estimation of means. Most “variance estimation” 
research in simulation refers to the estimation of the 
variance of the mean, to construct confidence intervals 
for mean values. There has been little research on the 
estimation of variance in simulation. We investigate 
three methods for point and interval estimates of 
variance and discuss an implementation of the best 
technique in an extended version of Akaroa2, a 
quantitative stochastic simulation controller. 

(1) 

(2) 

 
 
1. INTRODUCTION 

Current methodology for the analysis of output data 
from stochastic simulation focuses mainly on the 
estimation of means, and to a much lesser extent, on 
quantiles. Higher moments have not been considered. 
Research on “variance estimation” in simulation almost 
always refers to the estimation of the variance of the 
mean, in order to construct confidence intervals for 
mean values. The only previous research we could find 
on the direct estimation of the variance of correlated 
simulation data is an unpublished report by 
Deuermeyer, Feldman and Yang (1996). In 
communication networks variance of packet delays is an 
important performance measure e.g. for Voice-over 
Internet, as changes in the delay of packet delivery can 
have a significant degenerative effect on quality of 
service.  Applying stochastic simulation in studies of 
new solutions for next generations of 
telecommunication networks will require reliable 
estimates of variance and its statistical error.  
 
In Schmidt, Pawlikowski and McNickle (2008) (see also 
Schmidt, Pawlikowski and McNickle (2009)), three 
possible methods of variance estimation were identified. 
Here we focus on the testing and development of a 
reliable, accurate and efficient algorithm for sequential 
assessment of variance from simulation output data. The 

possible estimators of steady-state variance are 
described in Section 2. Section 3 reports the results of 
their testing, which involved running over 320,000 
simulations, each involving up to 36,000,000 
observations. Finally, the technical issues of 
implementing the selected estimators of variance in an 
extended version of Akaroa2, a quantitative stochastic 
simulation controller (McNickle. Pawlikowski and 
Ewing 2010), are discussed in Section 4.  
 
1.1. Variance Estimation 

We want to find point and interval estimates for the 
variance of a simulated process  , , … .  , …, . If the 
simulation output data represents independent and 
identically d t d ran om riab e usual well-
behave poi m te

is ribute d  va les, th
nt esti a  for the variance is: d 

∑ , 
where  is the average of the first n observations.  
 
From [5] the   variance of S2(n) is:

, 
where  is the steady-state variance and  the fourth 
central moment of the steady-state distribution. Thus, 
provided  exists, the point estimator will converge to 
its theoretical value. 
 
In simulation, however, observations are often highly 
correlated. In an M/M/1 queue with a traffic intensity of 
0.9, for example, the correlation between successive 
waiting times is 0.99043 (Daley, 1968). Now S2(n) is 
only asymptotically unbiased, and for interval estimates 
Equation (2) no longer applies. Alternative estimators 
are needed, which are discussed in Section 2. 
 
1.1.1. Coverage Analysis  
The method we will use to measure the quality of the 
estimates is Coverage Analysis. Coverage is the relative 
frequency with which an estimated confidence interval, 
supposedly of a certain size (e.g. 95%), actually 
contains the true value of the parameter of interest. It 
has the advantage of simultaneously capturing the 
quality of both point and interval estimates. Thus good 
estimators should produce coverages close to (say) 95%. 
In this research, we followed the principles and 
guidelines of coverage analysis described in 
Pawlikowski, McNickle and Ewing (1998). 
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1.2. Akaroa2 

Akaroa2 is an automated controller of both terminating 
and steady-state quantitative stochastic simulations, 
using the Multiple Replications in Parallel (MRIP) 
simulation scenario. In MRIP, identical simulation 
programs are run in parallel on multiple processors, 
which work as simulation engines producing multiple 
streams of output data. As shown in Pawlikowski and 
McNickle (2001), the resulted speedup of simulation is 
governed by a truncated version of Amdahl’s Law. The 
current version of Akaroa2 guarantees fast and accurate 
on-line analysis of arbitrary numbers of means. It is 
downloadable, at no charge for academic purposes, 
from www.akaroa.canterbury.ac.nz. The results of this 
research will expand its functionality by including 
automated estimation of variances. 
 
Users of Akaroa2 need to provide a simulation program 
of the system they are studying. The default language is   
C++. However, interfaces between Akaroa2 and a 
number of other languages and simulation packages are 
provided too. Observations collected during simulation 
are automatically submitted to the controller that is in 
charge of running the simulation and stopping it once a 
pre-defined stopping criterion (the acceptable level of 
statistical error of final results) is met. 
 
Control parameters (such as the acceptable level of the 
final statistical error of results, and the number of 
computers involved in MRIP) are set by the user before 
the simulation is run.  
 
In the case of terminating simulations only one method 
of variance estimation can be generally defined, that of 
independent replications, where a single value is taken 
from each replication of the system of interest, and that 
will be implemented in an extended version of Akaroa2. 
 
 
2. STEADY-STATE SIMULATION 

Finding accurate point and interval estimators of 
variance in steady-state simulation is much more 
challenging. Possible estimators have been described in 
Schmidt, McNickle and Pawlikowski (2008). Here we 
report on exhaustive testing of these over a wider range 
of models and parameters, and in particular we 
investigate the problem of batch mean sizes, which 
proves to be the Achilles Heel of an otherwise 
interesting method.  
 
The first estimator discussed is based on independent 
replications, similar to the approach used in terminating 
simulation. The second estimator is based on variance 
as an expected value, and the last estimator is based on 
batch means. Each estimator is discussed further in its 
section. 
 
One issue in steady-state simulation is that of dealing 
with the initial transient period. In the case of variance 

analysis, no generally applicable method for initial 
transient period detection has been proposed. One 
method that could be applied after further research is the 
method proposed by Eickhoff (2008). Here we simply 
discard a very generous, fixed number of observations. 
Development of a sequential rule for detecting the 
length of initial transient period for estimators of steady-
state variance has been left for further research. 
 
2.1. Independent Replications 

If somehow a sample of uncorrelated observations can 
be collected then  is an unbiased estimator of the 
variance and Equation (2) can be used to construct the 
corresponding confidence interval. 
 
One way to ensure that the observations used are 
uncorrelated is to use independent replications of the 
simulation. From each replication only a single 
observation is taken from the steady-state phase of 
simulation. The very obvious disadvantage of this 
method is that many observations are discarded; hence 
the runtime of the simulation is likely to be very large. 
However we include the method for completeness. 
 
2.2. Variance as an Expected Value 

This estimator n of variance as  comes from the definitio

. 
 

 
Thus, before analysis, the obse vations are first 
converted to: 

r

. 
 
We rely on the fact that the sample variance,  
from Equation (1), is at least an asymptotically unbiased 
estimator. By treating the required parameter as an 
expected value of some random variable, we can use 
existing mean value estimation techniques to calculate 
the variance. For confidence intervals we use spectral 
analysis, as described in Heidelberger and Welch 
(1981). This method of variance estimation produces 
good coverage results for mean values (see 
Pawlikowski, McNickle and Ewing (1998)). The 
conditions for the use of spectral analysis for variance 
are that the sum of the autocorrelations of {Yi} is finite, 
along with, of course  and . 
 
2.3. Batch Means 

This technique is described in Deuermeyer, Feldman 
and Yang (1996) (a more accessible reference is 
Schmidt, Pawlikowski and McNickle (2008)). It 
provides a method of compensating for the bias of 
sample variance , which also lends itself to 
calculating a confidence interval.  The basic idea behind 
calculating variance via batch means is to split the 
variance into two components: Local Variance – Mean 
variance inside batches, and Global Variance – Variance 
of means of the batches. The mean batch variance 
corrects the variance of the means of the batches to 

 



 

produce an unbiased estimate. A curious property of this 
estimator is that unbiased estimators are obtained 
regardless of the size of the batches. Thus, the batch-
size parameter can be left free to be determined by the 
requirements of the confidence interval calculation. The 
question is: does this independence of batch sizes 
extend, at least to some extent, to the calculation of 
confidence intervals? 
 
2.4. Evaluation of the Estimators 

2.4.1. Reference Models  
We considered the single server queues: M/M/1, M/E2/1 
and M/H2/1. For M/H2/1, squared coefficients of 
variation for the service times, CV2 = 5 and 50 were 
used. Use of the M/H2/1 queue with CV2 = 50 allows 
some investigation of how heavy-tailed service 
distributions can affect the performance of estimators. 
The property of each queue investigated is the waiting 
time. Generous fixed initial transient periods (up to 
20,000 observations) were used to ensure that the output 
data represented steady state. 
 
The Pollaczek-Khintchine transform formula  for 
the waiting time distribution (Gross and Harris 1985) 
was used to obtain the theoretical values of the variance 
of the waiting time. The th moment of the waiting time 
distribution is found by differentiating  n times 
using Maple and evaluating the derivatives at 0. 
 
2.4.2. Batch Means – The effect of batch size  
The key issue for the batch means method is, as always, 
how to select appropriate batch sizes. It seems 
reasonable that a practitioner estimating variances will 
also be interested in mean values. So, as a starting point, 
we calculated batch sizes for the M/M/1 queue which 
result in batch means with an arbitrarily low serial 
correlation of 0.01. They were calculated from the 
results of Law (1977) and Daley (1968). Due to the 
need to calculate large numbers of autocorrelations 
when deriving batch sizes for given queuing systems, 
Law’s method can be very lengthy and prone to failure, 
taking up to an hour in Maple when it worked. Also 
repeated runs were necessary to find a batch size giving 
the required correlation between batch means.  
 
Load Batch Size Correlation between 

successive batch means 
0.1 30 0.0085 
0.2 60 0.0093 
0.3 100 0.0099 
0.4 170 0.0097 
0.5 300 0.0093 
0.6 550 0.0092 
0.7 1100 0.0093 
0.8 2600 0.0099 
0.9 11000 0.0099 

 
Table 1: Initial Batch Sizes for the M/M/1 Queue 

For this reason, the other queues used these batch sizes 
as initial values, but they were increased or decreased 
depending on the expected correlation. Table 1 shows 
the calculated batch sizes for the M/M/1 queue. 

 
3. RESULTS 

Here we give a few representative results of coverage 
analysis for the steady-state estimators of variance. We 
concentrate on the most challenging model, M/H2/1.  
All coverage analysis results are calculated for 95% 
confidence intervals (a Required Coverage of 0.95) with 
a relative error of 5%. The simulations are repeated until 
this level of accuracy is achieved (this may require up to 
15,000 simulations.) A brief discussion is also given of 
the specific performance aspects of each estimator. 
 
3.1. Independent Replications 

 
Figure 1: Coverage of the   estimator  

on an M/H2/1 queue 
 
This estimator provides satisfactory coverage for all 
loads investigated. The main issue with this estimator is 
its inefficiency. Because of the number of observations 
it discards (see Section 3.4) it cannot be recommended 
for practical use. Both its speed and accuracy are also 
totally reliant on the accurate detection of the initial 
transient period, and this problem has not been 
satisfactorily solved yet.  
 
3.2. Variance as an Expected Value or Mean 

The coverage analysis results for the Variance as an 
Expected Value estimator ( ) are shown in Figure 2 
and Figure 3. 20,000 observations were deleted to make 
sure that observations from the initial transient period 
are not included. Figure 2 and Figure 3 show that  
performs well in terms of coverage, for all loads. The 
apparent deterioration of coverage at the load of 0.7 in 
Figure 3 is probably due to the extremely high 
coefficient of variation of service times in this case 
producing erratic results. Other than in this case, the 
estimator performs well. 
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Another feature of this estimator, apart from its good 
coverage, is that it is easy to implement as it makes use 
of mean value estimators which have been thoroughly 
investigated. Run times of its sequential implementation 
are similar to the Batch Means method, with no 
substantial difference between them detected. 
 

 
Figure 2: Coverage of the   estimator  

on an M/H2/1 queue, with CV2 = 5 
 

 
Figure 3: Coverage of the   estimator  

on an M/H2/1 queue, with CV2 = 50 
 
3.3. Batch Means 

In this section, we consider the coverage of the Batch 
Means ( ) estimator, as a function of batch size. The 
results show that the estimator can perform well for 
every load and queue investigated, if the correct batch 
size is known. The results confirm the initial results 
given in Schmidt, McNickle and Pawlikowski (2009) 
and also show that this estimator provides good 
coverage for queues with larger coefficients of 
variation, again under the proviso that an appropriate 
batch size can be found. 
 
 
 

3.3.1. M/E2/1 Queue  
The coverage of the Batch Means ( ) estimator for 
the M/E2/1 queue with a load of 0.9 and varying batch 
sizes is shown in Figure 4. Good coverage is obtained if 
the batch size is large enough.  

 
Figure 4: Coverage of the   estimator  

on an M/E2/1 queue with load 0.9 
 
 
3.3.2. M/M/1 Queue  
The coverage of the Batch Means ( ) estimator on 
the M/M/1 queue with a load of 0.9 and varying batch 
sizes is shown in Figure 5. Again acceptable coverage 
can be found if the batch size is large enough, although 
the required batch size has now increased considerably.  

 
Figure 5: Coverage of the   estimator with varying 

batch sizes on an M/M/1 queue with load 0.9 
 
 
3.3.3. M/H2/1 Queue  
The coverage of the Batch Means ( ) estimator on 
the M/H2/1 queue with a load of 0.8 and varying batch 
sizes is shown in Figure 6. The two curves in this figure 
are for CV2 of the service times of 5 and 50, 
respectively. 
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Figure 6: Coverage of  for M/H2/1 queues  

with CV2 = 5, 50 and load 0.8 
 
In each of Figures 4, 5, and 6, there is a batch size at 
which the Batch Means estimator providing satisfactory 
coverage. The coverage drops off much more quickly 
for the queue with a higher coefficient of variation. This 
is because the correlation between batch means is 
higher, which causes the generated confidence intervals 
to be worse. Note that Figure 6 uses a traffic intensity of 
0.8, as a traffic intensity of 0.9 turned out to require 
several weeks of computer time for coverage analysis of 
a single batch size. For a CV2 of 50, even for a load of 
0.8, however, satisfactory coverage is only just achieved 
within the range of batch sizes studied. 
 
The key conclusion of this part of the study is that 
unlike the point estimator, the performance of a Batch-
Means based interval estimator for variance does 
depend critically on getting the batch size right.  
 
3.4 Run Lengths 
 
Table 2 shows mean lengths of sequential simulations 
needed for obtaining the final results with statistical 
error of 5%, measured by the number of observations 
(or the number of replications in the case of 
Independent Replications)  
 

 Independent 
Replications 

Variance as    
Expected  
Value 

Batch 
Means 
 

M/E2/1 12685 1257700 945447 
M/M/1 12572 1684400 1333580 
M/H2/1(5)  5556790 4204000 
M/H2/1(50)  52140400 36281300 

Table 2. Run lengths for a traffic intensity of 0.8  
 
The first conclusion is that Independent Replications is 
going to be very inefficient. Even if we take a (very 
small) number of 1,000 observations as the length of 
initial transient period, the total required number of 
observations is an order of magnitude greater than those 

for the other two methods. In addition determining 
when steady state has been reached remains a largely 
open question for estimators other than means.  
Accurate answers for the M/H2/1 queues could not be 
obtained in reasonable time, so these runs were 
abandoned. Secondly, the numbers of observations for 
the other two methods are similar. They increase with 
CV of service times, and hence with the variance of 
waiting times. Thus, it is not surprising that these 
numbers are more than an order of magnitude bigger 
than the numbers required for estimating mean waiting 
times, illustrating the extra difficulty of variance 
estimation. 
 
 
4. IMPLEMENTATING THE ESTIMATORS  IN 

AKAROA2 

For terminating simulations the Independent 
Replications estimator is the only feasible point and 
interval-estimator for the variance. In steady-state, 
however, although the estimator , based on 
Independent Replications produced good coverage, it 
was eliminated due to its poor efficiency and 
prohibitively long run lengths. This left us with two 
estimators, based on Variance as an Expected Value 
( ) and on Batch Means ( ). The  estimator was 
found to produce good coverage on every queue and 
load tested, if a good batch size could be found. This is 
the main problem with any batch means-based 
estimator, as determination of an appropriate batch size 
is crucially important to the quality of the results. While 
a number of batch size selection algorithms have been 
proposed, they have only been tested on mean values. 
The  estimator also produced good coverage on each 
queue investigated, even on queues with high loads. 
One advantage of this estimator is that it is easy to 
implement as it makes use of existing mean value 
analysis modules. The main difference between the two 
methods is that Variance as Expected Value does not 
rely on the correct setting of an arbitrary parameter. 
 
Once implemented into Akaroa2, the estimator must be 
able to work on complex systems as well, and it is 
difficult to see how a good batch size could be 
determined in such cases for the  estimator. As a 
result of this, the  estimator was chosen to be 
implemented into an extended version of Akaroa2. 
 
4.1. Issues of Implementation  

In order to implement the variance analysis in Akaroa2, 
the global analyser needs to be modified; see Ewing, 
Pawlikowski and McNickle (2010). Fortunately, the 
estimation of variance by  requires similar processes 
to those already implemented for estimating means.  So 
the variance can be e  ratio: stimated by the

∑
∑ , 

where is the local point estimate of the variance from 
the ith simulation engine, and  the number of 
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Figure 8 shows the simulation in progress. The two bars 
show the mean and variance’s respective convergence 
to their required relative errors. The Global Estimates 
table gives information regarding the current global 
estimate of parameters: in this case: the mean-value and 
its relative error, and the variance and its relative error. 
The output of the simulation gives information on the 
mean (Mean) and its confidence interval half-width 
(Delta), as well as the variance (Variance) and its 
confidence interval half-width (Delta Variance). As 
usual with Akaroa2, additional simulation engines can 
be added at any time if the simulation of any of the 
parameters is converging too slowly (“Add Engines”). 
The system is also largely immune from the effects of 
processor failures, in that a failed processor is no 
different to one which is responding slowly. This 
property is particularly important given the long run-
times required for variance estimation. 

observations used by that e variance of the 
global estimate

 engine. Th
 is calculated from: 

∑
∑

, 

where  is the variance of the local variance 
estimate at the ith simulation engine 
 
Screenshots of a prototype graphical user interface of an 
extended Akaroa2, incorporating variance analysis, are 
shown in Figures 7 and 8. Figure 7 shows the “New 
Simulation” window, where the parameters for the 
simulation are set. In this case, the simulation will run 
until the mean and variance converge to the point where 
their 95% confidence intervals have a 5% relative error. 
 

 
 

 
 
5. CONCLUSIONS 

Three different sequential estimators for variance were 
tested extensively. The method of Independent 
Replications was eliminated as too inefficient. The 
remaining two estimators, based on Variance as an 
Expected Value, and Batch Means respectively, were 
thoroughly tested. Variance as an Expected Value 
produced satisfactory coverage and was noted as being 
particularly easy to implement. The Batch Means 
estimator was found to produce good coverage if a 
suitable batch size could be found. The inherent 
problem of Batch Means lies in determining the batch 
size, which will inevitably become more complicated as 
the complexity of the simulated model increases. As the 
Variance as an Expected Value estimator produces good 
coverage and does not require determination of any 
additional parameters, it has been selected to implement 
in an extended version of Akaroa2. 

Figure 7: Prototype “New Simulation” window 

 

Figure 8: Akaroa2 Prototype Simulation Running Window 
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