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ABSTRACT

Multiple Replications in Parallel (MRIP) have been
proposed for speeding up sequential stochastic discrete-
event simulation. In this scenario, multiple processors
concurrently produce statistically equivalent sequences
of observations that are pooled by a global analyser.
Such distributed production of observations allows to
shorten the time spent on collecting the number of ob-
servations needed for obtaining the final results with
acceptably small statistical errors.

The distributed generation of output data in MRIP sim-
ulation causes that new estimators (linear combinations
of ordinary sequential estimators) have to be applied.
In this paper we discuss the basic properties of an MRIP
estimator of steady-state mean value that is such a lin-
ear combination of non-distributed estimators of the
method of Spectral Analysis proposed by Heidelberger
and Welch (SA/HW). The MRIP version of SA/HW
has been assessed on the basis of its practical imple-
mentation in Akaroa2.

1 INTRODUCTION

Sequential stochastic discrete-event simulation, i.e.
stochastic simulation with on-line analysis of output
data, is generally accepted as the most effective way for
securing representativeness of samples of observations
collected during simulation (Heidelberger and Welch
1983, Law 1983, Law and Kelton 1992). In this
scenario, a simulation experiment is stopped when the
statistical error of estimates reaches the required (low)
level.

Practical applications of sequential simulation are
often hindered by extremely long times required for
collecting satisfactory large numbers of observations
needed for producing the results with acceptably small
statistical errors. This problem can be overcome by ex-
ecuting stochastic simulation in Multiple Replications
in Parallel (MRIP) scenario; see (Pawlikowski, Yau and
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McNickle 1994). In this scenario, multiple processors
concurrently produce statistically equivalent sequences
of observations that are pooled by a global analyser.
Such distributed production of observations allows to
shorten the time spent on collecting the number of
observations needed for obtaining the final results with
a required level of statistical errors; see (Pawlikowski
and McNickle 2001) for theoretical limitations of the
resulted speedup.

The concept of MRIP has been implemented in fully
automated way in Akaroa2; see (Ewing, Pawlikowski
and McNickle 1999). A user of Akaroa2 needs only
specify a required (relative) statistical error, confidence
level for each performance parameter whose mean
value is sought, and the number of processors of a local
computer network to be used as simulation engines,
see Figure 1. During the simulation, Akaroa2’s central
controlling process (akmaster) repeatedly estimates the
confidence interval of each mean value, at the specified
confidence level. When the required statistical preci-
sion of the all results has been reached, the simulation
is automatically stopped.

However, the distributed generation of output data
in MRIP simulations causes that special estimators,
constructed as linear combinations of ordinary se-
quential estimators, have to be used. In this paper
we discuss the basic properties of an MRIP estima-
tor of steady-state mean values, defined as a linear
combination of non-distributed estimators of the
method of Spectral Analysis proposed by Heidelberger
and Welch (SA/HW) in (Heidelberger and Welch
1981). The MRIP version of SA/HW is here assessed
on the basis of its practical implementation in Akaroa2.

Our focus on this method of simulation output data
analysis is motivated by the fact that SA/HW is the
only currently known method of sequential estimation
of steady-state mean values in which designers have



Fwing, McNickle and Pawlikowski

|akrun | |akrun |

akmaster
| Simulation 1] [ Simulation 2|
Host 1 Host 2 Host 3
akslave|
=Engine| |

= Engi nel

| Engine =
————/

Figure 1: Block diagram of a typical Akaroa2 process
structure, showing the central controlling process (“ak-
master”) with two simulations in progress, each using
three simulation engines spread over different physical
processors. The “akrun” processes provide the user
interface for launching simulations, monitoring their
progress and reporting the results.

large freedom of deciding about the granularity of se-
quential data analysis. Having selected the appropriate
granularity one should be able to achieve the speedup
limited only by the truncated Amdahl law formulated
in (Pawlikowski and McNickle 2001).

2 METHOD OF SPECTRAL ANALYSIS

The Spectral Analysis method of estimation of the
variance of steady-state mean px from an auto-
correlated sequence of observations xzg,x1,... was
originally proposed by Heidelberger and Welch (Hei-
delberger and Welch 1981). The variance is obtained
as the value of the periodogram II(f) (of the analysed
sequence of abservations) at frequency f = 0. Because
of high variability of a typical periodogram at low
frequencies, in SA/HW its value at f = 0 is obtained
through a regresion fit to the logarithm of the averaged
periodogram, where fitting is done using a polynomial
of degree d (typically d < 2). The fitting is done
using K fixed points of the periodogram II(f). As was
proved in (Heidelberger and Welch 1981), if d = 2,
then the confidence interval of ux can be obtained
using quantiles of Student t-distribution with the
number of degrees of freedom df = 7 (if K = 25) , or
df = 16 (if K = 50). By virtue of spectral analysis
of output data, the periodogram can be calculated
either over the sequence of individual observations

or over the sequence of their batch means. In the
latter, observations can be grouped into batches of
arbitrary size m, m > 1, purely for the purpose of data
aggregation.

In Akaroa2, a sequential version of SA/HW described
in (Pawlikowski 1990) is used by each simulation engine
participating in MRIP simulation. If P simulation en-
gines are employed, then whenever simulation engine
i, 1 = 1,2,..., P, reaches consecutive checkpoint of (its
replication of) the simulation, it calculates the local es-
timate X;(n;) of an analysed mean value px and the
estimate of its variance V[X;(n;)], using all n; observa-
tions that it has so far generated. In the current version
of Akaroa2, the latter estimates are obtained from the
regression fit of paraboles, i.e. assuming d = 2.

The central controlling process takes the most recent
local estimates produced by each of participating simu-
lation engines whenever a simulation engine reaches its
new checkpoint and combines them into a global esti-
mate X (P) of mean px and the estimate of variance
V[X(P)] of this pooled estimator, by using the formu-
las:

X(P) = % Zni)?l(m)
VIR(P) = = 3" 02V [Xi(ny)],

where n;, n; > 0, is the number of observations from
engine ¢ used by the central analyser at a given check-
point of its sequential analysis, and n = 211'3:1 n; is the
total number of observations available from all engines
at that checkpoint. Then, having used these estimates
for calculating statistical error of results at the given
checkpoint, it undertakes a decision about continuation
or stopping of the simulation.

Like the original SA/HW, SA/HW in its MRIP ver-
sion can be also applied to sequences of batch means,
instead of to individual observations. Thus, by selecting
appropriate batch size, one can reduce storage costs at
each simulation engine and communication costs with
the central controlling process.

Note that the pooled estimates are calculated from a
set of independent sub-sequences of (correlated) obser-
vations generated by multiple simulation engines, each
of which runs different, statistically independent repli-
cation of the same simulation. This results in linear
increase of degrees of freedom in Student t-statistics
used for obtaining the confidence interval of the pooled
mean. With P participating simulation engines, such a
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statistic will have dfprrrp = 7P or 16 P degrees of free-
dom, depending on the assumed K and d. Thus, one
could expect that the quality of the final results ob-
tained by applying SA/HW in its MRIP version should
be better than that of SA/HW in its original version
(with just one simulation engine): the more degrees
of freedom the more stable confidence intervals are pro-
duced. To check this supposition, let us consider the re-
sults of coverage analysis of the final results from MRIP
SA/HW.

3 PERFORMANCE EVALUATION

Coverage analysis is widely used for assessing the
quality of different methods used for constructing
confidence intervals on the basis of simulation output
data. By performing a large number of experiments
we estimate the fraction of the generated confidence
intervals which actually contain the true value of
the parameter. If the method is accurate then when
the theroretical confidence level has been set for ex-
ample to 95%, this fraction should also be close to 95%.

We performed sequential analysis of coverage, using
the methodology presented in (Pawlikowski, Ewing
and McNickle 1998), to produce coverage of MRIP
SA/HW estimates with a relative precision of 0.01
at 95% confidence level. It is worth noting that for
each setting of the parameters of the reference models,
getting coverage results with the statistical accuracy
required meant that up to 14,000 separate experiments
were needed.

Experiments were conducted for a number of ref-
erence models. Here we give only the results for an
M/M/1 queueing system model with traffic intensities
ranging from 0.1 to 0.9. When the degree of the fitting
polynomial was fixed, the quadratic fit (d = 2) pro-
duced the best results when compared with d = 1 or
d=3.

Figure 2 shows the results obtained for d = 2 with
K = 25 and 50, and a single simulation engine. It can
be seen that the coverage obtained agrees well with the
required coverage at low to medium traffic intensities,
falling off slightly at high intensities. There appears to
be little to choose between K = 25 and K = 50; the
latter perhaps giving a small improvement in coverage
at high traffic intensities.

Figure 3 compares the results obtained from a single
simulation engine to those from P = 2 or 4 simulation
engines. It can be clearly seen that, apart from re-
duction of simulation time, use of multiple simulation
engines leads to better quality of simulation results as
measured by the coverage of the final confidence inter-

vals.

4 CONCLUSIONS

The method of SA/HW, in its MRIP version imple-
mented in Akaroa2, has been found experimentally to
produce coverage values which agree very well with
those expected. Recent work by the authors sug-
gests that further improvements in coverage of MRIP
SA/HW can be obtained by dynamically selecting the
value of d (the degree of the polynomial for regression
fit) at run time. Another important issue is to find
an implementation of MRIP SA/HW that could offer
not only a good coverage of the final results but also
speedup close to the value theoretically achievable ac-
cording to the Truncated Amdahl Law. For that pur-
pose, one needs to look at the granularity of sequential
data analysis at individual simulation engines. At the
same time, locations of the first checkpoints should be
carefully selected, to insure that a quickly finished sim-
ulation still allows simulation engines to produce valid
local estimates.

In addition, the authors continue their investigations
of other methods of simulation output analysis for in-
creasing functionality of Akaroa2.
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Figure 2: Coverage obtained from M/M/1 queueing model running on a single simulation engine.
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Figure 3: Comparison of coverage obtained using K = 25 and varying numbers of simulation engines.



