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ABSTRACT

Research in distributed and parallel simulation has been al-
most entirely focused on partitioning the model of the system
being studied and simulating the parts on different proces-
sors. The main challenge of this technique concerns the log-
ical synchronisation of these interdependent simulated sub-
processes as they autonomously evolve in time.

There is another approach to distributed stochastic simula-
tion – known as Multiple Replications In Parallel, or MRIP
– that has attracted much less attention, despite being able
to take full advantage of the distributed computing power of
multiple networked processors without suffering from inher-
ent problems of the former approach.

In MRIP, the computers of the network run independent
replications of the whole simulation process, generating sta-
tistically equivalent streams of simulation output data. These
data streams are fed to a global data analyser responsible for
analysis of the final results and for stopping the simulation
when the results reach a satisfactory accuracy.

In this paper we discuss AKAROA-2, the latest version of a
fully automated simulation tool designed for running distrib-
uted stochastic simulations in MRIP scenario in a local area
network environment. It was designed within the AKAROA
project, at the University of Canterbury in Christchurch, New
Zealand. We focus on programming issues associated with
the design of AKAROA-2, as well as on the main advantages
and limitations of it as simulation tool.

1 INTRODUCTION

Over the last decade discrete-event simulation has become
perhaps the most common tool used by engineers of various

disciplines of science and engineering for studying and eval-
uating performance of various systems and processes. This is
the result of broad proliferation of powerful and cheap com-
puters, and significant achievements in software technology.
There is easy access to various user-friendly simulation pack-
ages in which traditional discrete-event simulation modeling
is supported by various techniques adopted from artificial in-
telligence. This climate has fostered a popular impression that
simulation is mainly an exercise in computer programming.

Traditionally, the main research activity in the area of sto-
chastic simulation has been focused on developing methods
for concurrently executing loosely-coupled parts of large sim-
ulation models on multi-processor computers, or multiple
computers of a network. In the context of stochastic simula-
tion this approach is known as Single Replication in Parallel,
or SRIP (Pawlikowski et al. 1994), since each simulated sub-
process evolves in time only once. The main challenge of this
approach is to find a robust and efficient method of synchro-
nization between processes simulated on different processors,
since the evolution of each sub-model of the original model
often depends on events occuring in other sub-models. So-
phisticated techniques have been proposed to solve this and
related problems, surveyed for example in (Fujimoto 1990;
Bagrodia 1996; Hellekalek 1998). In addition to efficiently
managing the execution of large partitioned simulation mod-
els, this approach can also offer reasonable speedup of simu-
lation, provided that a given simulation model is sufficiently
decomposable. Unfortunately, this feature is not frequently
observed in practice, thus the efficiency of this kind of dis-
tributed simulation is strongly model-dependent (Wagner and
Lazowska 1989), and has its well known limitation; see for
example (Bagrodia 1996).

An inherent problem of quantitative stochastic simulation,
conducted for assessing performance quality of simulated
systems, is the issue of credibility of the final results. Since
any such simulation can be regarded as a (simulated) statisti-
cal experiment, it is necessary to generate a sufficient amount
of output data, and to apply appropriate methods of analy-
sis, to ensure that the final results have acceptable precision.



There is general agreement that the only practical way to en-
sure statistical credibility of the results is by sequential analy-
sis of simulation output data (Heidelberger and Welch 1983;
Law and Kelton 1991).

In sequential analysis, the simulation is continued as long
as the number of collected observations, i.e. the sample size,
is not sufficient for reducing statistical errors of the results
below an acceptable threshold. Sequential analysis of cor-
related observations, for example for assessing precision of
steady-state performance measures, can require quite elabo-
rate techniques and most of research in this area has been so
far focused on analysis of steady-state means and percentiles;
see for example (Pawlikowski 1990) and (Raatikainen 1990;
Lee et al. 1999).

Direct application of sequential estimation is hindered in
practice by the fact that, even in the case of moderately com-
plex models, it can require very long simulation runs. A sim-
ple solution to this problem is to run stochastic sequential
simulation in parallel, on multiple processors acting as iden-
tical simulation engines, cooperating in generation of statis-
tically identical observations and submitting them to a global
analyser for statistical analysis. This approach to distributed
stochastic simulation is known as Multiple Replications In
Parallel (MRIP) (Pawlikowski et al. 1994). Note that SRIP
and MRIP are not two competing alternative techniques for
distributed simulation, since both could be applied at the same
time. If a cluster of processors is used in SRIP simulation, and
such clusters are replicated according to MRIP, then the final
speedup should be the product of speedups achievable when
using SRIP and MRIP separately.

The first implementations of the MRIP scenario in simula-
tion packages were independently reported by research teams
from the Purdue University in USA (Rego and Sunderam
1992; Sunderam and Rego 1991) and the University of Can-
terbury in New Zealand (Pawlikowski and Yau 1992; Yau and
Pawlikowski 1993) which, respectively, designed EcliPse and
Akaroa. In this paper we discuss Akaroa-2, the latest version
of our fully automated simulation tool designed for running
distributed stochastic simulations in local area networks us-
ing MRIP. We focus on programming issues associated with
the design of Akaroa-2, and also discuss its advantages and
limitations.

2 USER INTERFACE

Akaroa-2 is a re-designed and improved version of the orig-
inal Akaroa (described in (Yau and Pawlikowski 1993), and
referred to here as Akaroa-1). Like Akaroa-1, Akaroa-2 is
written in object-oriented C++ and runs on multiple Unix
workstations connected by a local area network. It offers
fully automated parallel execution of ordinary simulation pro-
grams for (automated) analysis of mean values1, and auto-
mated stopping of simulation when the final results reach the

1Work is being done to add sequential analysis of proportions and quan-
tiles to Akaroa-2 (Lee et al. 1999; Lee et al. 1999a).

required precision. It can be applied to both terminating and
steady-state sequential stochastic simulation.

Akaroa-2 is designed mainly for use with simulation pro-
grams written in C or C++, but can be easily adapted to work
with other languages and systems. It has been used, for ex-
ample, with Pascal programs and Ptolemy models.

Programming Interface

Ease of adapting existing simulation programs was one of the
main design objectives of both Akaroa-1 and Akaroa-2. Any
simulation program which produces a stream of observations,
and is written in C or C++ or can be linked with a C++ library,
can be converted to run under Akaroa-2 by adding to the ex-
isting code as little as one procedure call per analysed perfor-
mance measure. In the simplest case, at the point where the
program generates an observation, the observation is passed
to Akaroa-2 by making the call

AkObservation(value)

The AkObservation routine is part of the Akaroa-2 library
with which the simulation program is linked.

If more than one parameter (performance measure) is being
studied, an additional call has to be made before the simula-
tion begins:

AkDeclareParameters(n)

wheren is the number of parameters that are to be analysed.
Then, when an observation used in analysis of the parameter
i is generated,i is passed as an extra argument of AkObser-
vation:

AkObservation(i, value)

The Akaroa-2 system will stop the simulation itself when
the required precision of the estimated parameter(s) has been
reached.

Shell Command Interface

Once the simulation program is compiled, the same exe-
cutable may be used in two different ways:stand-alone mode
andMRIP mode. The primary purpose of stand-alone mode is
for debugging the simulation program. Debugging techniques
such as writing diagnostic output and using a source-level de-
bugger are much easier to apply in this mode than they are in
MRIP mode.

The akrun program is used to start a simulation in MRIP
mode. An example of the use ofakrunis:

% akrun -n 3 mm1 0.5

This command specifies that a simulation program called
mm1is to be run (with an argument of 0.5) using 3 simula-
tion engines.2 The user is informed of the progress of the
simulation by a transcript such as the following:

2In this example,mm1a program performs steady-state simulation of an
M/M/1 queueing system with a specified traffic intensity.



Figure 1: Akgui window showing the status of a simulation being executed.

Simulation ID = 10152
Simulation engine started: host = host1
Simulation engine started: host = host2
Simulation engine started: host = host3
Par Estimate Delta Conf Var Count Trans
1 0.2054 0.0096 0.95 2.141e-05 13236 828

The first few lines confirm that three simulation engines have
been launched on the hosts namedhost1, host2and host3.
As the simulation runs, Akaroa-2 performs sequential steady-
state analysis of the data based on the methods described in
(Pawlikowski 1990), adapted to MRIP; see (Pawlikowski et
al. 1994).

At the end, the final results are displayed.Estimateand
Deltaare the final estimates of the parameter analysed and the
half-width of its confidence interval;Var is the variance of the
estimate;Countis the total number of observations submitted
for analysis by all three simulation engines; andTransis the
total number of observations discarded during the transient
phase (before analysis of steady-state was initiated).

The shell-command interface to Akaroa-2 also provides fa-
cilities for specifying options such as the desired precision
and confidence level of results, selecting different analysis
methods, enquiring about the status of running simulations,
and adding more engines to an existing simulation; see (Ew-
ing et al. 1998).

Graphical User Interface

A graphical user interface,akgui, has been recently added as
an alternative to the shell command interface. The main akgui
window shows a list of hosts available for running simulation
engines and a list of currently running simulations. New sim-
ulations may be started by entering parameters into a dialog

box, and existing simulations may be opened up to show their
progress.

Figure 1 shows a simulation progress window. The bar
graph dynamically displays the relative precision of each

performance measure, showing its convergence to the re-
quested precision (which in this case is 0.05, at a confidence
level 0.95). The same information, along with the current es-
timate of each performance measure, is presented numerically
in theGlobal Estimatestable.

3 ARCHITECTURE

The main components of Akaroa-2 are theakmaster, theak-
slaves, akrun and thesimulation engines. The relationships
between these components are shown in Figure 2. Each bold-
outlined box represents one Unix process, and the connecting
lines represent TCP/IP stream connections.

The akmasterprocess coordinates the activity of all other
processes initiated by Akaroa-2. It launches new simulations,
maintains state information about running simulations, per-
forms global analysis of the data produced by simulation en-
gines, and makes simulation stopping decisions.

Akslaveprocesses run on hosts which are to run simulation
engines. The sole function of the akslave is to launch simu-
lation engine(s) on its host as directed by the akmaster. The
akslave processes have been introduced because other meth-
ods of launching remote processes under Unix (for example,
by usingrsh) tend to be slow and unreliable.

The akrun program, as already mentioned, is used to ini-
tiate a simulation. It first contacts the akmaster process, ob-
taining its host name and port number from a file left by the
akmaster in the user’s home directory. For each simulation
engine requested, the akmaster chooses a host from among
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Figure 2: Akaroa-2 architecture, with two simulations in
progress, each using three engines on separate network hosts.

those hosts on the LAN which are running akslave processes.
It instructs the akslave on that host to launch an instance of
the user’s simulation program, passing on any specified ar-
guments. The first time the simulation program calls one of
the Akaroa-2 library routines, the simulation engine opens a
connection to the akmaster process and identifies the simula-
tion to which it belongs, so that the akmaster can associate the
connection with the appropriate simulation data structure.

Following the principles of sequential stochastic simulation
(Pawlikowski 1990), each engine performs sequential analy-
sis of its own data to form alocal estimateof each perfor-
mance measure. At more or less regularly determinedcheck-
points, the engine sends its local estimates to the akmaster
process, where the local estimates of each performance mea-
sure from all engines are combined to give a set ofglobal
estimates.

Whenever a new global estimate is calculated, the relative
half-width of its confidence interval at the requested confi-
dence level is computed, and compared with the requested
precision. When the precision of all analysed performance
measures becomes satisfactory, the akmaster terminates all
the simulation engines, and sends the final global estimates
to the akrun process, which in turn reports them to the user.

Interprocess Communication.

Akaroa-1 used UDP/IP datagrams to communicate between
processes. Since the UDP protocol does not guarantee reli-
able packet delivery, Akaroa-1 spent much effort attempting
to deal with issues of packet loss and duplication. The system
tended to be unreliable and difficult to manage. If a process
failed to respond within an arbitrary timeout, it was hard to
tell whether it had died or was simply taking longer than usual
to respond due to host and/or network loading.

In Akaroa-2, all interprocess communication is via TCP/IP

stream connections, which provide reliable, sequenced, non-
duplicated delivery of messages. This has greatly simpli-
fied the communication subsystems of Akaroa-2, and made
it much more dependable. The only disadvantage is a limit
under some versions of Unix on the total number of processes
that can participate in a single Akaroa session. For Solaris
this limit is about 1000, which should not be a problem in
practice.

Random Numbers.

In MRIP, each simulation engine must use pseudo-random
numbers (PRNs) independent from those used by other en-
gines. Consequently, in Akaroa-2, random number genera-
tion is not left to the user’s simulation program. Instead, the
akmaster process is given full control over PRNs used by dif-
ferent simulation engines.

Currently Akaroa-2 uses 25 multiplicative congruential
generators with modulusM = 231 − 1 whose multipliers
are taken from the top of the list of over 200 generators rec-
ommended in (Fishman and Moore III 1986), plus another 25
whose multipliers are the inverses (modM ) of the first ones.
The akmaster process concatenates these 50 sequences into
one sequence with a total length of about1011 numbers. This
is the limit on the total length of a simulation that can be exe-
cuted under Akaroa-2.

Since it would be very inefficient for a simulation engine
to have to communicate with the akmaster process every time
it wanted a PRN, the akmaster allocatesblocksof PRNs to
simulation engines. The first time an engine requests a PRN,
it receives a tuple(k, i, n) representing a segment of the total
sequence of numbers of lengthn, beginning at numberi of
the sequence generated by multiplierAk. The engine has its
own local generic PRN generator and a copy of the table of
multipliers. It initialises the generator by settingx = Ai

k

(modM ) and generates numbers locally until alln assigned
numbers have been used, whereupon it requests a new block
from the akmaster.

4 PERFORMANCE EVALUATION
OF AKAROA-2

Credibity of the final results of performance evaluation stud-
ies based on stochastic simulation and conducted with a help
of a simulation tool should be the main issue addressed by
designers of any tool of practical significance. One cannot
achieve this without providing statistically sound source(s) of
randomness and ensuring that the applied methods of analysis
of simulation output data are able to produce correct results.

Within the framework of MRIP, different methods of se-
quential statistical analysis can be applied to the simulation
output data. To test the accuracy of these methods, we have
proposed a special methodology for coverage analysis (Paw-
likowski et al. 1998). Since analysis of output data during
steady-state simulation is more challenging than from termi-
nating simulation, let us focused at the former.
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Figure 3: Coverage of SA/HW (steady-state analysis of the
mean delay) applied to four models: M/M/1, M/D/1,M/H2/1
(“hyper”) and an open queueing network modelling a CPU
with two disks (“omulti”).

Our main results of analysis of the sequential methods pro-
posed for steady-state simulation have been published in (Mc-
Nickle et al. 1996; Ewing 1997; Lee et al. 1998; Lee et al.
1999). They showed an interesting phenomenon: in MRIP,
the quality of sequential methods of data analysisimproves
with the degree of parallelisation. As an example, Figure 3
shows the results of coverage analysis obtained for a sequen-
tial method of analysis of steady-state mean values known as
SA/HW, in its MRIP version (Pawlikowski et al. 1994). One
can clearily see that the quality of this method improves as
the number of parallel simulation engines increases.

These encouraging coverage results also verify the selec-
tion of PRN generators used in Akaroa-2, although we are
aware of their limitations (see (Hellekalek 1998)) and are
searching for better generators.

The main reason for using MRIP is its expected speedup.
The (average) speedupS can be defined as the ratio of the (av-
erage) run length of simulation executed on a single processor
and the (average) run length of simulation on one ofP proces-
sors participating in MRIP simulation. In both cases the run
length can be measured by the number of observations needed
to be collected for stopping the simulation with the required
level of precison of the final results. Assuming a fine gran-
ularity of run length (i.e. a small distance between consec-
utive checkpoints), the maximum speedup obtainable when
running an MRIP simulation onP computers is governed by
a truncated Amdahl’s law (Pawlikowski and McNickle 1998),
which states that

S =
{

1/(s + (1 − s)/P ), if P ≤ N(1 − s)/n1

N(1 − s)/n1, otherwise.
(1)

wheres represents the (average) fraction of the simulation
run length which cannot be parallelised;N is the mean total
number of observations needed to reach the required preci-
sion of results; andn1 is the (average) number of observations
needed to reach the first checkpoint.

As discussed in (Pawlikowski et al. 1998), in the case of
terminating simulations = 0, and the speedup is equal to the
number of simulation engines used, as long asP ≤ (N −
n1)/n. Depending on the method of simulation dataoutput
analysis, in steady-state simulations ≥ 0, so the speedup can
be less than linear.

All proven methods of steady-state analysis that are cur-
rently implemented in Akaroa-2 (or planned to be imple-
mented (Lee et al. 1999)) depend crucially on discarding of
all observations that do not represent steady-state, thus for all
of thems > 0. WhenP ≥ (N −n1)/n, no further speedup is
possible, since none of the engines can reach more than one
checkpoint before the simulation is stopped.

Figure 4 shows speedup achieved in Akaroa-2 as the num-
ber of simulation engines increases. These results are from a
simulation for estimating the mean delay in an M/M/1 queue-
ing system loaded at 0.9, using the SA/HW method of analy-
sis.

The dotted line represents the maximum speedup as given
by Equation 1. On the basis of our experiments, in this case
N is about 2,000,000,n1 is about 500 ands is about 0.025%.
Thus, Equation 1 says that the maximum theoretically possi-
ble speedup of the simulation reported in Figure 4, if an un-
limited number of processors were available, would be about
4000.

There are two sources for the shortfall in actual speedup
shown in Figure 4. One is the checkpoint spacing, which de-
termines the granularity of the run lengths and causes devi-
ations from the theoretical maximum speedup predicted by
Equation 1. Some improvement in speedup could be obtained
by taking checkpoints more often, but some methods of sim-
ulation output data analysis, including SA/HW, impose limits
on how far the checkpoint spacing can be reduced before in-
curring large performance penalties and/or compromising the
accuracy of the analysis. Overcoming this problem is one of
our current research areas.

The other source, more significant in this example, is the
fact that the simulation results produced by the single- and
multi-processor cases are not of the same quality. When more
processors are used, SA/HW produces better estimates of the
precision of the results, leading to better coverage. However,
this comes at the expense of longer overall run lengths, and
therefore some loss of speedup. This tradeoff should be borne
in mind when judging the benefits of using MRIP.

5 CONCLUSIONS

In this paper we discussed the main issues of distributed sto-
chastic simulation using the MRIP approach, focusing on as-
pects of its implementation in Akaroa-2, the latest version of a
simulation package developed in the Department of Computer
Science at the University of Canterbury in Christchurch, New
Zealand. Without requiring the use of any parallel program-
ming techniques, Akaroa-2 automatically distributes simula-
tion models over a number of computers linked by a local
area network, and controls the simulation run length so as to
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Figure 4: Theoretical (dotted) and actual (solid) speedup as a function of the number of simulation engines.

produce final results having a specified precision.

From the user’s point of view, distributed stochastic simula-
tion using MRIP appears to be a very attractive application of
network computing. It makes good use of the distributed com-
puting power of processors linked by a local area network,
significantly speeding up simulation experiments on dynamic
stochastic systems regardless of the internal structure of their
models. This is done in a way which is transparent for users.

It is important to realise that MRIP is not an alternative to
traditional methods of distributed simulation, but that the two
can complement each other.

While successful implementation of SRIP crucially de-
pends on finding a solution to the problem of synchronisation
between simulated sub-processes, the main challenge in the
case of MRIP lies in the area of statistics. Very little is known
about the properties of linear combinations of estimators used
in analysis of output data generated by multiple simulation
engines.

Research activities in the Akaroa project are continuing.
They are currently aimed at increasing the functionality of
Akaroa-2. We are also investigating the possibility of apply-
ing MRIP-like techniques in other areas of scientific compu-
tation besides stochastic simulation.
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