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ABSTRACT

It is generally accepted thatself-similar(or fractal) processes
may provide better models for teletraffic in modern telecom-
munication networks than Poisson processes. If this is not
taken into account, it can lead to inaccurate conclusions
about performance of telecommunication networks. Thus, an
important requirement for conducting simulation studies of
telecommunication networks is the ability to generate long
synthetic stochastic self-similar sequences.

Three generators of pseudo-random self-similar se-
quences, based on the FFT (Paxson 1997), RMD (Lau et al.
1995) and SRA method (Crilly et al. 1991; Jeong et al. 1998)
are compared and analysed in this paper. Properties of these
generators were experimentally studied in the sense of their
statistical accuracy and times required to produce sequences
of a given (long) length. While all three generators show sim-
ilar levels of accuracy of the output data (in the sense of rel-
ative accuracy of the Hurst parameter), the RMD- and SRA-
based generators appear to be much faster than the generator
based on FFT. Our results also show that a robust method for
comparative studies of self-similarity in pseudo-random se-
quences is needed.

INTRODUCTION

The search for accurate mathematical models of data streams
in modern telecommunication networks has attracted a con-
siderable amount of interest in the last few years. The rea-
son is that several recent teletraffic studies of local and wide
area networks, including the world wide web, have shown
that commonly used teletraffic models, based on Poisson or
related processes, are not able to capture the self-similar (or
fractal) nature of teletraffic (Leland et al. 1994; Likhanov

et al. 1995; Paxson and Floyd 1995; Ryu 1996), espe-
cially when they are engaged in such sophisticated services as
variable-bit-rate (VBR) video transmission (Garrett and Will-
inger 1994; Krunz and Makowski 1998; Rose 1997). The
properties of teletraffic in such scenarios are very different
from both the properties of conventional models of telephone
traffic and the traditional models of data traffic generated by
computers.

The use of traditional models of teletraffic can result in
overly optimistic estimates of performance of telecommu-
nication networks, insufficient allocation of communication
and data processing resources, and difficulties in ensuring the
quality of service expected by network users (Beran 1992;
Neidhardt and Wang 1998; Paxson and Floyd 1995). On the
other hand, if the strongly correlated character of teletraffic is
explicitly taken into account, this can also lead to more effi-
cient traffic control mechanisms.

Several methods for generating pseudo-random self-
similar sequences have been proposed. They include meth-
ods based on fast fractional Gaussian noise (Mandelbrot
1971), fractional ARIMA processes (Hosking 1984), the
M/G/∞ queue model (Krunz and Makowski 1998; Leland
et al. 1994), autoregressive processes (Cario and Nelson
1998; Granger 1980), spatial renewal processes (Taralp et
al. 1998), etc. Some of them generate asymptotically self-
similar sequences and require large amounts of CPU time.
For example, Hosking’s method (Hosking 1984), based on
the F-ARIMA(0, d, 0) process, needs many hours to produce
a self-similar sequence with 131,072 (217) numbers on a Sun
SPARCstation 4 (Leland et al. 1994). It requiresO(n2) com-
putations to generaten numbers. Even though exact meth-
ods of generation of self-similar sequences exist (for exam-
ple: (Mandelbrot 1971)), they are only fast enough for short
sequences. They are usually inappropriate for generating long
sequences because they require multiple passes along gener-
ated sequences. To overcome this, approximate methods for
generation of self-similar sequences in simulation studies of
telecommunication networks have also been proposed (Lau et
al. 1995; Paxson 1997).



Our comparative evaluation of three methods proposed
for generating self-similar sequences concentrates on two as-
pects: (i) how accurately self-similar processes can be gener-
ated, and (ii) how fast the methods generate long self-similar
sequences. We consider three methods: (i) a method based on
the fast Fourier transform (FFT)algorithm and implemented
by Paxson (Paxson 1997); (ii) a method based on therandom
midpoint displacement (RMD)algorithm and implemented by
Lau, Erramilli, Wang and Willinger (Lau et al. 1995); and
(iii) a method based on thesuccessive random addition (SRA)
algorithm, proposed by Saupe, D. (Crilly et al. 1991) and im-
plemented by Jeong, McNickle and Pawlikowski (Jeong et al.
1998).

A summary of the basic properties of self-similar
processes is given in section . In section the three genera-
tors of pseudo-random self-similar sequences are described.
Numerical results of comparative analysis of sequences gen-
erated by these generators are discussed in section .

SELF-SIMILAR PROCESSES
AND THEIR PROPERTIES

Basic definitions of self-similar processes are as follows:
A continuous-time stochastic process{Xt} is stronglyself-
similar with a self-similarity parameterH(0 < H <
1), know as the Hurst parameter, if for any positive
stretching factorc, the rescaled process with time scale
ct, c−HXct, is equal in distribution to the original process
{Xt} (Beran 1994). This means that, for any se-
quence of time pointst1, t2, . . . , tn, and for all c > 0,
{c−HXct1 , c

−HXct2 , . . . , c
−HXctn

} has the same distribu-
tion as{Xt1 , Xt2 , . . . , Xtn}.

In discrete-time case, let{Xk} = {Xk : k = 0, 1, 2, . . .}
be a (discrete-time) stationary process with meanµ, vari-
anceσ2, and autocorrelation function (ACF){ρk}, for k =
0, 1, 2, . . ., and let{X(m)

k }∞k=1 = {X(m)
1 , X

(m)
2 , . . .}, m =

1, 2, 3, . . ., be a sequence of batch means, i.e.,X
(m)
k =

(Xkm−m+1 + . . . + Xkm)/m, k ≥ 1.
The process{Xk} with ρk → k−β , ask → ∞, 0 <

β < 1, is calledexactly self-similarwith H = 1 − (β/2),
if ρ

(m)
k = ρk, for anym = 1, 2, 3, . . .. In other words, the

process{Xk} and the averaged processes{X(m)
k }, m ≥ 1,

have identical correlation structure.
The process{Xk} is asymptotically self-similarwith

H = 1 − (β/2), if ρ
(m)
k → ρk, asm → ∞.

The most frequently studied models of self-similar traf-
fic belong either to the class of fractional autoregressive
integrated moving-average (F-ARIMA) processes or to the
class of fractional Gaussian noise processes; see (Hosking
1984; Leland et al. 1994; Paxson 1997). F-ARIMA(p, d, q)
processes were introduced by Hosking (Hosking 1984) who
showed that they are asymptotically self-similar with Hurst

parameterH = d + 1
2 , as long as0 < d < 1

2 . In addition,
the incremental process{Yk} = {Xk − Xk−1}, k ≥ 0, is
called thefractional Gaussian noise(FGN) process, where
{Xk} designates a fractional Brownian motion (FBM) ran-
dom process. This process is a (discrete-time) stationary
Gaussian process with meanµ, varianceσ2 and {ρk} =
{ 1

2 (|k + 1|2H − 2|k|2H + |k − 1|2H)}, k > 0. A FBM
process, which is the sum of FGN increments, is charac-
terised by three properties (Mandelbrot and Wallis 1969):
(i) it is a continuous zero-mean Gaussian process{Xt} =
{Xs : s ≥ 0 and 0 < H < 1} with ACF given by
ρs,t = 1

2 (s2H + t2H − |s − t|2H) wheres is time lag and
t is time; (ii) its increments{Xt − Xt−1} form a stationary
random process; (iii) it is self-similar with Hurst parameter
H , that is, for allc > 0, {Xct} = {cHXt}, in the sense that,
if time is changed by the ratioc, then{Xt} is changed bycH .

Main properties of self-similar processes include (Beran
1994; Cox 1984; Leland et al. 1994):

• Slowly decaying variance. The variance of the sam-
ple mean decreases more slowly than the reciprocal of
the sample size, that is,V ar[{X(m)

k }] → c1m
−β1 as

m → ∞, wherec1 is a constant and0 < β1 < 1.

• Long-range dependence. A process{Xk} is called a
stationary process withlong-range dependence (LRD)
if its ACF {ρk} is non-summable, that is,

∑∞
k=0 ρk =

∞. The speed of decay of autocorrelations is more like
hyperbolic than exponential.

• Hurst effect. Self-similarity manifests itself by a
straight line of slopeβ2 on a log-log plot of theR/S
statistic. For a given set of numbers{X1, X2, . . . , Xn}
with sample mean̂µ = E{Xi} and sample variance
S2(n) = E{(Xi − µ̂)2}, Hurst parameterH is pre-
sented by therescaled adjusted rangeR(n)

S(n) (or R/S

statistic) whereR(n) = max{∑k
i=1(Xi − µ̂), 1 ≤ k ≤

n} − min{∑k
i=1(Xi − µ̂), 1 ≤ k ≤ n} andS is esti-

mated byS(n) =
√

E{(Xi − µ̂)2}. Hurst found em-
pirically that for many time series observed in nature
the expected value ofR(n)

S(n) asymptotically satisfies the

power law relation, i.e.,E[R(n)
S(n) ] → c2n

H asn → ∞
with 0.5 < H < 1 andc2 is a finite positive constant
(Beran 1994).

In simulation of telecommunication networks, given a se-
quence of the approximate FBM process{Xt}, we can ob-
tain a self-similar cumulative arrival process{Yt} (Lau et
al. 1995; Norros 1994):{Yt} = Mt +

√
AM{Xt}, t ∈

(−∞, +∞) whereM is the mean input rate andA is the
peakedness factor, defined as the ratio of variance to the mean,
M > 0, A > 0. The Gaussian incremental process{Ỹt} from
timet to timet+1 is given as:{Ỹt} = M +

√
AM [{Xt+1}−

{Xt}].
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THREE METHODS

The FFT- and RMD-based methods were suggested as be-
ing sufficiently fast for practical applications in generation of
simulation input data (Lau et al. 1995; Paxson 1997). In
this paper, we have reported properties of these two methods
and compare them with SRA, one of recently proposed al-
ternative methods for generating pseudo-random self-similar
sequences (Jeong et al. 1998). These methods can be charac-
terised as follows:

FFT Method

This method generates approximate self-similar sequences
based on the Fast Fourier Transform and a process known
as the Fractional Gaussian Noise (FGN) process, (Figure 1.)
Its main difficulty is connected with calculating the power
spectrum, which involves an infinite summation. Paxson has
solved this problem by applying a special approximation.

Figure 1 shows how the FFT method generates self-
similar sequences. Briefly, it is based on (i) calculation of
the power spectrum using the periodogram (the power spec-
trum at a given frequency represents an independent exponen-
tial random variable); (ii) construction of complex numbers
which are governed by the normal distribution; (iii) execution
of the inverse FFT. For a more detailed reference, see (Paxson

1997).

RMD Method

The basic concept of therandom midpoint displacement
(RMD) algorithm is to extend the generated sequence recur-
sively, by adding new values at the midpoints from the values
at the endpoints.

Figure 2 outlines how the RMD algorithm works. Fig-
ure 3 illustrates the first three steps of the method, leading to
generation of the sequence (d3,1, d3,2, d3,3, d3,4). The reason
for subdividing the interval between 0 and 1 is to construct
the Gaussian increments ofX . Adding offsets to midpoints
makes the marginal distribution of the final result normal. For
more detailed discussions of the RMD method, see (Lau et al.
1995; Peitgen et al. 1992).

SRA Method

Another alternative method for the direct generation of FBM
process is based on thesuccessive random addition(SRA)
algorithm (Crilly et al. 1991). The SRA method uses the
midpoints like RMD, but adds a displacement of a suitable
variance to all of the points to increase stability of the gener-
ated sequence (Peitgen and Saupe 1988).



Figure 4 shows how the SRA method generates an ap-
proximate self-similar sequence. The reason for interpolating
midpoints is to construct Gaussian increments ofX , which
are correlated. Adding offsets to all points should make
the resulted sequence self-similar and of normal distribution
(Peitgen and Saupe 1988).

The SRA method consists of the following steps:

Step.1 If the process{Xt} is to be computed for times in-
stancest between 0 and 1, then start out by setting
X0 = 0 and selectingX1 as a pseudo-random number
from a Gaussian distribution with mean 0 and variance
V ar[X1] = σ2

0 . ThenV ar[X1 − X0] = σ2
0 .

Step.2 Next,X 1
2

is constructed by the interpolation of the mid-

point, that is,X 1
2

= 1
2 (X0 + X1).

Step.3 Add a displacement of a suitable variance to all of the
points, i.e.,X0 = X0 + d1,1, X 1

2
= X 1

2
+ d1,2, X1 =

X1 + d1,3. The offsetsd1,∗ are governed by fractional
Gaussian noise. ForV ar[Xt2 − Xt1 ] = |t2 − t1|2Hσ2

0

to be true, for anyt1, t2, 0 ≤ t1 ≤ t2 ≤ 1, it is re-
quired thatV ar[X 1

2
−X0] = 1

4V ar[X1−X0]+2S2
1 =

(1
2 )2Hσ2

0 , that is,S2
1 = 1

2 ( 1
21 )2H(1 − 22H−2)σ2

0 .

Step.4 Next, Step.2 and Step.3 are repeated. Therefore,S2
n =

1
2 ( 1

2n )2H(1−22H−2)σ2
0 , whereσ2

0 is an initial variance
and0 < H < 1.

Using the above steps, the SRA method generates an ap-
proximate self-similar FBM process.

ANALYSIS OF SELF-SIMILAR
SEQUENCES

Three generators of self-similar sequences of pseudo-random
numbers described in the Section have been implemented in
C on a Sun SPARCstation 4 (110 MHz, 32 MB), and used to
generate self-similar cumulative arrival processes, mentioned
at the end of Section . The mean times required for generat-
ing sequences of a given length were obtained by using the
SunOS 5.5date command and averaged over 30 iterations,
having generated sequences of 32,768 (215), 131,072 (217),
262,144 (218), 524,288 (219) and 1,048,576 (220) numbers.

We have also analysed the efficiency of these meth-
ods in the sense of their accuracy. For each ofH =
0.5, 0.55, 0.7, 0.9, 0.95, each method was used to generate
over 100 sample sequences of 32,768 (215) numbers start-
ing from different random seeds. Self-similarity and marginal
distributions of the generated sequences were assessed by ap-
plying the best currently available techniques. These include:

• Anderson-Darling goodness-of-fit test: used to show
that the marginal distribution of sample sequences gen-
erated by all three methods is normal or almost nor-
mal, since all three methods are based on Gaussian

processes. This test is more powerful thanKolmogorov-
Smirnovwhen testing against a specified normal distri-
bution (Gibbons and Chakraborti 1992).

• Periodogram plot: used to show whether a gener-
ated sequence is LRD or not. It can be shown that
if the autocorrelations were summable, then near the
origin the periodogram should be scattered randomly
around a constant. If the autocorrelations were non-
summable, i.e., LRD, the points of a sequence are scat-
tered around a negative slope. The periodogram plot
is obtained by plottinglog10(periodogram) against
log10(frequency). An estimate of the Hurst parame-
ter is given byĤ = (1 − β̂3)/2 whereβ̂3 is the slope
(Beran 1994).

• R/S statistic plot: graphical R/S analysis of empirical
data can be used to estimate the Hurst parameterĤ .
An estimate ofH is given by the asymptotic slopêβ2

of the R/S statistic plot, i.e.,̂H = β̂2 (Beran 1994).

• Variance-time plot: is obtained by plotting
log10(V ar(X(m))) againstlog10(m) and by fitting a
simple least square line through the resulting points in
the plane. An estimate of the Hurst parameter is given
by Ĥ = 1 − β̂1/2 whereβ̂1 is the slope (Beran 1994).

• Whittle’s approximate maximum likelihood estimate
(MLE): is a more refined data analysis method to ob-
tain confidence intervals (CIs) for the Hurst parameter
H (Beran 1994).

Analysis of Accuracy

We have summarised the results of our analysis in the follow-
ing:

• Anderson-Darling goodness-of-fit test was applied to
test normality of sample sequences. The results of the
tests, executed at the 5% significance level, showed that
the generated sequences could be considered as nor-
mally distributed for all but a few sequences with the
high value of H.

The estimates of Hurst parameter obtained from the pe-
riodogram, the R/S statistic, the variance-time and Whittle’s
MLE, have been used to compare the accuracy of the three
methods. The relative inaccuracy∆H is calculated using the
formula: ∆H = Ĥ−H

H ∗ 100%, whereH is the input value

andĤ is an empirical mean value. The presented numerical
results are all averaged over 100 sequences.

• The periodogram plots have slopes decreasing asH
increases. The negative slopes of all our plots for
H = 0.5, 0.55, 0.7, 0.9, 0.95 were the evidence of self-
similarity. A comparison of relative inaccuracy∆H
of the estimated Hurst parameters of three methods us-
ing periodogram plot is given in Table 1. We see that
in the most cases parameter H of the FFT method was
closer to the required value than in the case of the RMD



and SRA methods, although the relative inaccuracy de-
grades with increasing H (but never exceeds 6%). The
analysis of periodograms suggest that the FFT method
always produces self-similar sequences with positively
biased H, while sequences produced by two other meth-
ods are negatively biased.

• The plots of R/S statistic clearly confirmed the self-
similar nature of the generated sequences. The rel-
ative inaccuracy∆H of the estimated Hurst parame-
ter, obtained by R/S statistic plot, is given in Table
2. As we see, these results suggest that the FFT
method is slightly better than the other two (but for
H = 0.9, 0.95). This method of analysis of H does not
link any of these generators with persistently negative
or positive bias of H, as the periodogram plots did.

• The variance-time plots also supported the claim that
generated sequences were self-similar. Table 3 gives
the relative inaccuracy∆H of the estimated Hurst pa-
rameters obtained by the variance-time plot. Again, all
three methods show comparable quality of the output
sequences in the sense of H, with the relative inaccu-
racy increasing with the increase in H, but remaining
below 8%. This time, all results but one suggest that
the output sequences are negatively biased H, regard-
less of the method.

• The results for Whittle estimator of H with the corre-
sponding 95% CIs Ĥ ± 1.96σ̂Ĥ , see Table 4, show that
for all inputH values, CIs for the FFT method cover the
assumed theoretical values, while the RMD and SRA
methods produce sequences weaker correlated than ex-
pected (exceptH = 0.5).

Our results show that all three generators produce approx-
imately self-similar sequences, with the relative inaccuracy
∆H increasing with H, but always staying below 9%. Ap-
parently there is a problem with more detailed comparative
studies of such generators, since different methods of analy-
sis of the Hurst parameter can give different results regarding
the bias ofĤ characterising the same output sequences. More
reliable methods for assessment of self-similarity in pseudo-
random sequences are needed.

Computational Complexity

The results of our experimental analysis of mean times needed
by the three generators for generating pseudo-random self-
similar sequences of a given length are shown in Table 5.
The main conclusions are listed below.

• FFT methodis the slowest of the three analysed meth-
ods. This is caused by relatively high complexity of the
inverse FFT algorithm. Table 5 shows its time com-
plexity and the mean running time. It took 5 seconds
to generate a sequence of 32,768 (215) numbers, while
generation of a sequence with 1,048,576 (220) numbers

took 3 minutes and 47 seconds. FFT method requires
O(nlogn) computations to generaten numbers (Press
et al. 1986).

• RMD methodis faster and simpler than FFT. Table 5
shows its time complexity and the mean running time.
Generation of a sequence with 32,768 (215) numbers
took 3 seconds. It also took 1 minute and 33 sec-
onds to generate a sequence of 1,048,576 (220) num-
bers. The theoretical algorithmic complexity isO(n)
(Peitgen and Saupe 1988).

• SRA methodappears to be as fast as RMD. Table 5
shows its time complexity and the mean running time.
The theoretical algorithmic complexity isO(n) (Peit-
gen and Saupe 1988).

In summary, our results show that the generators based
on RMD and SRA are faster in practical applications than the
generator based on FFT, when long self-similar sequences of
numbers are needed.

CONCLUSIONS

In this paper we have presented the results of a comparative
analysis of three generators of (long) pseudo-random self-
similar sequences. It appears that all three generators, based
on FFT, RMD and SRA, generate approximately self-similar
sequences, with the relative inaccuracy of the resulted H be-
low 9%, if 0.5 ≤ H ≤ 0.95. On the other hand, the analy-
sis of mean times needed for generating sequences of given
lengths shows that two generators (based on RMD and SRA)
should be recommended for practical simulation of telecom-
munication networks, since they are much faster than the gen-
erator based on FFT. Our study has also revealed that a robust
method for comparative studies of self-similarity in pseudo-
random sequences is needed, since currently available meth-
ods can provide inconclusive proofs of accuracy of such se-
quences. This is the direction of our current research.
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Table 1: Relative inaccuracy∆H esti-
mated from periodogram plots.

H FFT RMD SRA

0.5 + 0.07 % - 0.01 % - 0.09 %
0.55 + 1.26 % - 1.31 % - 1.41 %
0.7 + 3.14 % - 3.74 % - 3.78 %
0.9 + 3.93 % - 5.10 % - 5.13 %
0.95 + 3.99 % - 5.28 % - 5.31 %

Table 2: Relative inaccuracy∆H esti-
mated from R/S statistic plots.

H FFT RMD SRA

0.5 +7.34 % +8.74 % +8.71 %
0.55 +5.32 % +6.28 % +6.23 %
0.7 +0.82 % +1.28 % +1.26 %
0.9 - 5.02 % - 4.46 % - 4.44 %
0.95 - 6.89 % - 6.34 % - 6.31 %



Table 3: Relative inaccuracy∆H esti-
mated from variance-time plots.

H FFT RMD SRA

0.5 - 0.85 % +0.57 % - 2.76 %
0.55 - 1.00 % - 0.19 % - 2.97 %
0.7 - 1.88 % - 1.76 % - 3.38 %
0.9 - 5.39 % - 5.29 % - 6.00 %
0.95 - 6.98 % - 6.91 % - 7.47 %

Table 4: Estimated mean values of H using Whittle’s MLE. Each CI is for over 100
sample sequences. 95% CIs for the means are given in parentheses.

Theoretical Hurst parameter
Method .5 .55 .7 .9 .95

FFT .500 .550 .700 .900 .949
(.490, .510) (.540, .560) (.691, .710) (.891, .909) (.940, .958)

RMD .500 .538 .658 .826 .870
(.490, .510) (.528, .548) (.647, .666) (.817, .835) (.861, .879)

SRA .500 .538 .656 .825 .869
(.490, .510) (.528, .547) (.647, .666) (.816, .834) (.860, .878)

Table 5: Complexity and mean running times of generators. Running times were
obtained by using the SunOS 5.5date command on a Sun SPARCstation 4 (110
MHz, 32 MB); each mean is averaged over 30 iterations.

Sequence of
Method Complexity 32,768 131,072 262,144 524,288 1,048,576

Numbers Numbers Numbers Numbers Numbers
Mean running time (minute:second)

FFT O(nlogn) 0:5 0:20 0:35 1:12 3:47
RMD O(n) 0:3 0:11 0:29 0:40 1:33
SRA O(n) 0:3 0:10 0:20 0:40 1:31
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