
Fast Self-Similar Teletraffic Generation Based on FGN and Wavelets

Hae-Duck J. Jeong†, Don McNickle‡ and Krzysztof Pawlikowski†

Department of†Computer Science and‡Management
University of Canterbury, Christchurch

New Zealand
joshua@cosc.canterbury.ac.nz

Abstract

It is generally accepted thatself-similar (or fractal)
processes may provide better models of teletraffic in mod-
ern computer networks than Poisson processes. Thus, an
important requirement for conducting simulation studies of
telecommunication networks is the ability to generate long
synthetic stochastic self-similar sequences. A new genera-
tor of pseudo-random self-similar sequences, based on the
fractional Gaussian noise (FGN) and a wavelet transform,
is proposed and analysed in this paper. Specifically, this
generator uses Daubechies wavelets. The motivation be-
hind this selection of wavelets is that Daubechies wavelets
lead to more accurate results by better matching the self-
similar structure of long range dependent processes, than
other types of wavelets. The statistical accuracy and time
required to produce sequences of a given (long) length are
experimentally studied. This generator shows a high level
of accuracy of the output data (in the sense of the Hurst pa-
rameter) and is fast. Its theoretical algorithmic complexity
isO(n).

1. Introduction

The search for accurate mathematical models of data
streams in modern computer networks has attracted a con-
siderable amount of interest in the last few years.

Several recent teletraffic studies of local and wide area
networks, including the World Wide Web, have shown that
commonly used teletraffic models, based on Poisson or re-
lated processes, are not able to capture the self-similar (or
fractal) nature of teletraffic [16], [17], [24], [26], espe-
cially when these networks are engaged in such sophisti-
cated services as variable-bit-rate (VBR) video transmis-
sion [8], [14], [25]. The properties of teletraffic in such sce-
narios are very different from both the properties of conven-
tional models of telephone traffic and the traditional models
of data traffic generated by computers.

The use of traditional models of teletraffic can result in
overly optimistic estimates of performance of computer net-
works, insufficient allocation of communication and data
processing resources, and difficulties in ensuring the quality
of service expected by network users [2], [22], [24]. On the
other hand, if the strongly correlated character of teletraffic
is explicitly taken into account, this can also lead to more
efficient traffic control mechanisms.

Several methods for generating pseudo-random self-
similar sequences have been proposed. They include meth-
ods based on fast fractional Gaussian noise [19], frac-
tional ARIMA processes [10], theM/G/∞ queue model
[14], [16], autoregressive processes [4], spatial renewal
processes [28], etc. Some of them generate asymptotically
self-similar sequences and require large amounts of CPU
time. For example, Hosking’s method [10], based on the F-
ARIMA( 0, d, 0) process, needs 1.5 hours to produce a self-
similar sequence with 131,072 (217) numbers on a Pentium
II [12], [16]. It requiresO(n2) computations to generaten
numbers. Even though exact methods of generation of self-
similar sequences exist (for example: [19]), they are only
fast enough for short sequences. They are usually inappro-
priate for generating long sequences because they require
multiple passes along generated sequences. To overcome
this, approximate methods for generation of self-similar se-
quences in simulation studies of computer networks have
been proposed [15], [23].

The evaluation of our generator based on Daubechies
wavelets (DW) concentrates on two aspects: (i) how ac-
curately a self-similar process can be generated; and (ii)
how quickly the method generates long self-similar se-
quences. Our method, based on the fractional Gaussian
noise (FGN) and Daubechies wavelets, will be called the
FGN-DW method.

A summary of the basic properties of self-similar
processes is given in Section 2. Section 3 describes the
spectral density of FGN processes, while a discrete wavelet
transform (DWT) for synthesising approximate FGN is pre-
sented in Section 4. In Section 5, a generator of pseudo-



random self-similar sequences, based on FGN and DW, is
described. Numerical results of analysis of sequences gen-
erated by this generator are discussed in Section 6.

2. Self-Similar Processes and Their Properties

Basic definitions of self-similar processes are as follows:
A continuous-time stochastic process{Xt} is strongly

self-similarwith a self-similarity parameterH(0 < H <
1), know as the Hurst parameter, if for any positive stretch-
ing factor c, c > 0, the rescaled process with time
scale ct, c−HXct, is equal in distribution to the origi-
nal process{Xt} [3]. This means that, for any se-
quence of time pointst1, t2, . . . , tn, and for all c > 0,
{c−HXct1 , c

−HXct2 , · · · , c−HXctn
} has the same distrib-

ution as{Xt1 , Xt2 , · · · , Xtn}.
In the discrete-time case, let{Xk} = {Xk : k =

0, 1, 2, · · ·} be a (discrete-time) stationary process with
meanµ, varianceσ2, and autocorrelation function (ACF)
{ρk}, for k = 0, 1, 2, · · ·, and let {X(m)

k }∞k=1 =
{X(m)

1 , X
(m)
2 , · · ·},m = 1, 2, 3, · · ·, be a sequence of batch

means, that is,

X
(m)
k = (Xkm−m+1 + · · · +Xkm)/m, k ≥ 1.

The process{Xk} with ρk → k−β , ask → ∞, 0 <
β < 1, is calledexactly self-similarwith H = 1 − (β/2),
if ρ(m)

k = ρk, for anym = 1, 2, 3, · · ·. In other words, the

process{Xk} and the averaged processes{X(m)
k },m ≥ 1,

have an identical correlation structure. The process{Xk} is

asymptotically self-similarwith H = 1− (β/2), if ρ(m)
k →

ρk, asm→ ∞.
The most frequently studied models of self-similar traf-

fic belong either to the class of fractional autoregressive in-
tegrated moving-average (F-ARIMA) processes or to the
class of fractional Gaussian noise processes; see [10],
[16], [23]. F-ARIMA(p, d, q) processes were introduced
by Hosking [10], who showed that they are asymptotically
self-similar with Hurst parameterH = d + 1

2 , as long as
0 < d < 1

2 , wherep is the order of autoregression in the
ARIMA process andq is the order of the moving average in
the ARIMA process. For the second class, the FGN process
is the incremental process{Yk} = {Xk − Xk−1}, k ≥
0, where{Xk} designates a fractional Brownian motion
(FBM) random process. This process is a (discrete-time)
stationary Gaussian process with meanµ, varianceσ2 and
{ρk} = { 1

2 (|k + 1|2H − 2|k|2H + |k − 1|2H)}, k > 0.
An FBM process, which is the sum of FGN increments, is
characterised by three properties [20]: (i) it is a continuous
zero-mean Gaussian process{Xt} = {Xs : s ≥ 0 and
0 < H < 1} with ACF given byρs,t = 1

2 (s2H + t2H −|s−
t|2H) wheres is time lag andt is time; (ii) its increments
{Xt − Xt−1} form a stationary random process; (iii) it is

self-similar with Hurst parameterH , that is, for allc > 0,
{Xct} = {cHXt}, in the sense that, if time is changed by
the ratioc, then the distribution of{Xt} and{cHXt} re-
mains the same.

The main properties of self-similar processes include
([3], [5], [16]):

• Slowly decaying variance. The variance of the sample
mean decreases more slowly than the reciprocal of the
sample size, i.e.,V ar[{X(m)

k }] → c1m
−β1, asm →

∞, wherec1 is a constant and0 < β1 < 1.

• Long-range dependence. A process{Xk} is called a
stationary process withlong-range dependence (LRD)
if its ACF {ρk} is non-summable, i.e.,

∑∞
k=0 ρk =

∞. The speed of decay of autocorrelations is more
hyperbolic than exponential.

• Hurst effect. Self-similarity manifests itself by a
straight line of slopeβ2, 0.5 < β2 < 1, on a log-log
plot of theR/S statistic. For a given set of numbers
{X1, X2, · · · , Xn} with sample meanµ = E{Xi} and
sample varianceS2(n) = E{(Xi−µ)2}, the Hurst pa-
rameterH is presented by therescaled adjusted range
R(n)
S(n) (orR/S statistic), where

R(n) = max{
k∑

i=1

(Xi − µ), 1 ≤ k ≤ n}

- min{
k∑

i=1

(Xi − µ), 1 ≤ k ≤ n}

and S is estimated byS(n) =
√
E{(Xi − µ)2}.

Hurst found empirically that for many time series ob-
served in nature, the expected value ofR(n)

S(n) asymp-

totically satisfies the power law relation:E[R(n)
S(n) ] →

c2n
H , asn → ∞, with 0.5 < H < 1 andc2 is a finite

positive constant [3].

• 1/f -noise. The spectral densityf(λ;H) obeys a
power law near the origin, i.e.,f(λ;H) → c3λ

β3 ,
asλ → 0, wherec3 is a finite positive constant and
H = 1−β3

2 .

We will use these properties to investigate characteristics
of generated self-similar sequences.

3. Spectral Density of FGN Processes

In our generator, numbers representing the spectral den-
sity function of FGN are obtained by applying appropriate



transformations to originally uniformly distributed pseudo-
random numbers. The spectral densityf(λ;H) of an FGN
process is given by

f(λ;H) = 2cf (1 − cos(λ))
∞∑

k=−∞
|2πk + λ|−2H−1 (1)

for 0 < H < 1 and−π ≤ λ ≤ π, where

cf = σ2(2π)−1sin(πH)Γ(2H + 1)

andσ2 = Var[Xk]; see [3].
The main difficulty with using Equation (1) to compute

the spectral density is the vexing infinite summation. The
approximation of the abovef(λ;H) is given in [3] as

f(λ;H) = cf |λ|1−2H +O(|λ|min(3−2H,2)) (2)

whereO(·) represents the residual error.
This formula is used by us in the generator of self-similar

sequences proposed in this paper. Another generator of self-
similar sequences based on FGN was also proposed by Pax-
son [23], but his method was based on a more complicated
approximation off(λ;H) than this one given by Equation
(2).

4. Discrete Wavelet Transform

Our method for generating synthetic self-similar FGN
sequences in a time domain is based on the discrete wavelet
transform (DWT). It has been shown that wavelets can pro-
vide compact representations for a class of FGN processes
[7], [13]. This is because the structure of wavelets naturally
matches the self-similar structure of the long range depen-
dent processes [1], [6], [29].

Wavelets are complete orthonormal bases which can be
used to represent a random time series in two domains: time
and frequency. In Hilbert spaceL2(R), scaled and shifted
functionsψj,m(k) of wavelets can be represented as

ψj,m(k) = 2−j/2ψ0(2−jk −m)

where j and m are positive integers [18]. Since such
wavelets are obtained by scaling and shifting a single func-
tion, ψ0(k), this function is called the mother wavelet.
Moreover, all base functionsψj,m(k) have the same shape
as the mother wavelet and therefore are self-similar with
each other.

For our generator, we chose Daubechies wavelets, which
belong to the class of orthonormal wavelets, because they
produce more accurate coefficients of wavelets than Haar
wavelets (for more detailed discussions, see also [6], [29];

and our results of the comparison in Section 6). They are
defined as

ψ(k) =
1∑

i=−2S+1

(−1)ip1−iφ(2k − i),

where{pi} is the two-scale sequence ofφ(k) and

φ(k) =
2S∑
i=0

piφ(2k − i).

A discrete-time process{Xk} can be represented
through the inverse DWT of

{Xk} = {
S∑

j=1

2S−j−1∑
m=0

dj,mψj,m(k)},

where0 ≤ k < 2S; andS is a positive integer which char-
acterises the limited resolution in time;dj,m’s are wavelet
coefficients which can be obtained through the DWT, since

dj,m =
∑2S−1

t=0 Xkψj,m(k).

5. A Fast Algorithm for Generating Self-
Similar Teletraffic

We claim that the FGN and Daubechies wavelet-based
transformation is sufficiently fast for practical generation of
synthetic self-similar sequences to be used as simulation in-
put data. The general strategy behind our method, called
FGN-DW, is the same as in [23]. The algorithm consists of
the following steps:

Step.1 Calculate a sequence of values{f1, f2, · · · , fn} using
Equation (2),fi = f̂(πi

n ), corresponding to the spec-
tral density of an FGN process for frequenciesfi rang-
ing betweenπ

n andπ.

Step.2 Multiply {fi} by realisations of an independent ex-
ponential random variable with a mean of 1 to obtain
{f̂i}.

Step.3 Generate a sequence{y1, y2, · · · , yp} of complex

numbers such that|yi| =
√
f̂i and the phase ofyi is

uniformly distributed between 0 and2π. This random
phase technique, taken from [27], preserves the spec-
tral density corresponding to{f̂i}, but ensures that dif-
ferent sequences generated using the method will be
independent. It also ensures that the marginal distrib-
ution of the final sequence is normal. The phase ran-
domisation makes the different frequency components
independent and was also applied in [23].



Step.4 Calculate two synthetic coefficients of orthonormal
Daubechies wavelets which are used in the inverse
DWT [21]. Then, generate the approximately self-
similar FGN sequence in the time domain by using the
inverse DWT from{yi}.

Using the above steps, the proposed FGN-DW method
generates a fast and well approximated self-similar FGN
process.

6. Analysis of Self-Similar Sequences

The generator of self-similar sequences of pseudo-
random numbers described in Section 5 has been imple-
mented in Matlab on a Pentium II (233 MHz, 64 MB). The
mean times required for generating sequences of a given
length were obtained by using the Matlabclock com-
mand and averaged over 30 iterations, having generated
sequences of 32,768 (215), 131,072 (217), 262,144 (218),
524,288 (219) and 1,048,576 (220) numbers.

We have also analysed the accuracy of the method. For
each ofH = 0.5, 0.55, 0.7, 0.9, 0.95, the method was
used to generate over 100 sample sequences of 32,768
(215) numbers starting from different random seeds. Self-
similarity and marginal distributions of the generated se-
quences were assessed by applying the best currently avail-
able techniques. These include:

• Anderson-Darling goodness-of-fit test: used to show
that the marginal distribution of sample sequences gen-
erated by the method is, as required, normal (or almost
normal). This test is more powerful thanKolmogorov-
Smirnovwhen testing against a specified normal distri-
bution [9].

• Periodogram plot: used to show whether a generated
sequence is LRD or not. It can be shown that if the
autocorrelations are summable, then, near the origin
in frequency domain, the periodogram should be scat-
tered randomly around a constant level. If the au-
tocorrelations are non-summable, i.e., LRD-type, the
points of a sequence are scattered around a negative
slope. The periodogram plot is obtained by plotting
log10(periodogram) againstlog10(frequency). An
estimate of the Hurst parameter is given bŷH =
(1 − β̂3)/2, whereβ̂3 is the slope [3].

• R/S statistic plot: used to estimate the Hurst parameter
H from empirical data. An estimate ofH is given by
the asymptotic slopêβ2 of the R/S statistic plot, i.e.,
Ĥ = β̂2 [3].

• Variance-time plot: obtained by plotting
log10(V ar(X(m))) againstlog10(m) and by fitting a

simple least square line through the resulting points in
the plane. An estimate of the Hurst parameter is given
by Ĥ = 1 − β̂1/2 whereβ̂1 is the slope [3].

• Whittle’s approximate maximum likelihood esti-
mate(MLE): for a more refined data analysis, used
to obtain confidence intervals (CIs) for the Hurst
parameterH [3]. It examines the properties in
frequency domain, while the R/S statistic plot and
variance-time plot focus on the time domain. Sup-
pose{x1, x2, · · · , xn} is a sequence of a self-similar
process{Xk} for which all parameters are known ex-
cept Var[Xi] and H. Letf(λ;H) be the spectral den-
sity of {Xk} when normalised to have variance 1,
andI(λ) be the periodogram of{Xk}. Then to esti-
mate H, findĤ that minimises the following equation:
g(Ĥ) =

∫ π

−π
I(λ)

f(λ;Ĥ)
dλ.

6.1. Analysis of Accuracy

We have summarised the results of our analysis in the
following table:

• The Anderson-Darling goodness-of-fit test was ap-
plied to test the normality of sample sequences. The
results of the tests, executed at the 5% significance
level, showed that the generated sequences could be
considered as normally distributed for all but a few se-
quences with a high value of H; for more discussions,
see in [11].

The estimates of the Hurst parameter obtained from the
periodogram, the R/S statistic, the variance-time and Whit-
tle’s MLE, have been used to analyse the accuracy of the
generator. The relative inaccuracy∆H is calculated using
the formula:

∆H = Ĥ−H
H ∗ 100%, whereH is the required value

of the Hurst parameter and̂H is the empirical mean value
over a number of independently generated sequences. The
presented numerical results are all averaged over 100 se-
quences.

• The periodogram plots have slopes decreasing asH
increases. The results forH = 0.5, 0.7, 0.9 are shown
in Figure 1. The negative slopes of all our plots for
H = 0.5, 0.55, 0.7, 0.9, 0.95were the evidence of self-
similarity. The relative inaccuracy,∆H , of the esti-
mated Hurst parameters of the method, assessed using
a periodogram plot, is given in Table 1. We see that,
in most cases, parameter H of the FGN-DW method
was close to the required value, although the relative
inaccuracy degrades with increasing H (but never ex-
ceeds 2%). The analysis of the periodogram shows that
the FGN-DW method always produces self-similar se-
quences with a negatively biased̂H.



• The plots of R/S statistic indicate the self-similar na-
ture of the generated sequences. The results forH =
0.5, 0.7, 0.9 are shown in Figure 2. The relative in-
accuracy,∆H , of the estimated Hurst parameter, ob-
tained from the R/S statistic plot, is given in Table 1.
This method of analysis of H does not show that this
generator has a persistently positive or negative bias of
Ĥ, as the periodogram plots did.

• The variance-time plots also support the claim that
generated sequences are self-similar; see results for
H = 0.5, 0.7, 0.9 in Figure 3. Table 1 gives the
relative inaccuracy,∆H , of the estimated Hurst para-
meters obtained by the variance-time plot. Again, the
method shows high quality in the sense of the accuracy
of H in generated sequences, with the relative inaccu-
racy increasing with the increase in H, but remaining
below 8%. This time, the results suggest that the out-
put sequences have a negatively biasedĤ.

• The results for the Whittle estimator of H with the cor-
responding 95% CIs Ĥ ± 1.96σ̂Ĥ , see Table 2, show
that for all inputH values (butH = 0.5), the FGN-
DW method produces sequences with so negatively bi-
ased H values that the CIs forH ≥ 0.7 do not contain
theoretical values.

Our results show that the generator produces approxi-
mately self-similar FGN sequences, with the relative inac-
curacy,∆H , increasing with the increase of H, but always
staying below 8%. Apparently there is a more general prob-
lem with more detailed studies of such generators, since
different methods of analysis of the Hurst parameter can
give different results for the bias of̂H in the same output
sequence. More reliable methods for assessment of self-
similarity in pseudo-random sequences are needed.

6.2. Computational Complexity

The results of our experimental analysis of mean times
needed by the FGN-DW generator for generating pseudo-
random self-similar sequences of a given length are shown
in Table 3.

The main conclusion is that the FGN-DW method is fast.
Table 3 shows that 2 seconds were needed to generate a
sequence of 32,768 (215) numbers, while generation of a
sequence with 1,048,576 (220) numbers took 51 seconds.

The theoretical algorithmic complexity of forming spec-
tral density, and constructing normally distributed complex
numbers, isO(1), while the inverse DWT isO(n) [23],
[29]. Thus, the time complexity of FGN-DW is alsoO(n).

In summary, our results show that a generator of pseudo-
random self-similar sequences based on FGN and DW is

Table 1. Relative inaccuracy, ∆H , estimated
from periodogram, R/S statistic and variance-
time plots.

H Periodogram R/S Statistic Variance-Time

.5 - 0.07 % +7.64 % - 0.61 %
.55 - 0.49 % +5.34 % - 0.99 %
.7 - 1.31 % +0.51 % - 2.15 %
.9 - 1.85 % - 5.25 % - 5.94 %
.95 - 1.93 % - 7.10 % - 7.54 %

Table 2. Estimated mean values of H using
Whittle’s MLE. Each CI is for over 100 sample
sequences. 95% CIs for the means are given
in parentheses.

H Estimated Mean Values

.5 .500 (.490, .509)
.55 .542 (.532, .551)
.7 .672 (.662, .681)
.9 .851 (.842, .861)
.95 .897 (.888, .906)

sufficiently fast to make it applicable in practical com-
puter simulation studies, when long self-similar sequences
of numbers are needed.

6.3. Using Haar Wavelets and Daubechies Wavelets
for Generation of LRD Sequences

We use the Daubechies wavelets for generation of self-
similar sequences because they produce more accurate co-
efficients of wavelets than Haar wavelets. For more detailed
discussions of Haar wavelets, see [6], [29]. Our results of
comparison of sequences produced by generators based on
Haar wavelets and Daubechies wavelets are shown in Ta-
ble 4.

7. Conclusions

In this paper we have proposed a generator of (long)
pseudo-random self-similar sequences, based on the FGN
and DW transform. It appears that this generator produces
approximately self-similar sequences, with the relative in-
accuracy of the resulted H below 8%, if 0.5 ≤ H ≤ 0.95.
On the other hand, the analysis of mean times needed



Table 3. Mean running times of generators. Running times were
obtained by using the Matlab clock command on a Pentium II (233
MHz, 64 MB); each mean is averaged over 30 iterations.

Sequence of
Mean 32,768 131,072 262,144 524,288 1,048,576

Running Numbers Numbers Numbers Numbers Numbers
Time Mean running time (minute:second)

T (n) 0:02 0:07 0:13 0:25 0:51

Table 4. Comparison of sequences generated by using Haar wavelets and
Daubechies wavelets (H = 0.9).

Method Haar Daub(8) Daub(16) Daub(32) Daub(50)

Periodogram .855 .881 .884 .885 .884
R/S-statistic .856 .857 .857 .858 .856

Variance-time .844 .852 .852 .852 .849
Whittle’s MLE .826 .850 .852 .853 .852

(.817, .835) (.840, .859) (.842, .861) (.844, .862) (.843, .862)

for generating sequences of a given length shows that this
generator should be recommended for practical simulation
studies of telecommunication networks, since it is very fast
and accurate.
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Figure 1. Periodogram plot for FGN-DW
method (H = 0.5, 0.7, 0.9)
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Figure 2. R/S statistic plot for FGN-DW
method (H = 0.5, 0.7, 0.9)
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Variance−time plot for  FGN−DW method (H = 0.5)
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Figure 3. variance-time plot for FGN-DW
method (H = 0.5, 0.7, 0.9)


