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Abstract

It is generally accepted that self-similar processes may provide better models
for teletraffic in modern telecommunication networks than Poisson processes.
If stochastic self-similarity of teletraffic is not taken into account, it can lead
to inaccurate conclusions about performance of networks. Thus, an impor-
tant requirement for conducting simulation studies of networks is the ability
to generate long synthetic self-similar sequences of incremental processes, to
transform them into inter-event time intervals, and this should be done accu-
rately and fast. A method for transformation of count processes into inter-
event processes proposed by Leroux and Hassan [14] is studied. A case study
is discussed to show how long sequences are needed in steady-state simulation
of queueing models with self-similar input processes. This is compared with
simulation run lengths of the same queueing models fed by Poisson processes.

1 Introduction

The search for accurate mathematical models of data streams in modern telecom-
munication networks has attracted a considerable amount of interest in the last few
years. The reason is that several recent teletraffic studies of local and wide area
networks, including the world wide internet, have shown that commonly used tele-
traffic models, based on Poisson or related processes with short-range dependencies
(SRD), are not able to capture the self-similar, (or fractal) nature of teletraffic with
long-range dependencies (LRD); see Leland et al. [13], Likhanov et al. [15], Paxson
and Floyd [22], Ryu [24]. This is particularly important in networks that are en-
gaged in such sophisticated services as variable-bit-rate (VBR) video transmission
(Garrett and Willinger [6], Krunz and Makowski [11], Rose [23]). The properties of
teletraffic in such scenarios are very different from both the properties of conven-
tional models of telephone traffic and the traditional models of data traffic generated
by computers.



The use of traditional models of teletraffic can result in overly optimistic esti-
mates of performance of telecommunication networks, insufficient allocation of com-
munication and data processing resources, and difficulties in ensuring the quality of
service expected by network users (Beran [1], Neidhardt and Wang [19], Paxson and
Floyd [22]). On the other hand, if the strongly correlated character of teletraffic
is explicitly taken into account, this can also lead to more efficient traffic control
mechanisms (Östring et al. [20]).

Several methods for generating pseudo-random self-similar count processes have
been proposed. They include methods based on fractional Gaussian noise (Man-
delbrot [16]), fractional ARIMA processes (Hosking [8]), the M/G/∞ queue model
(Krunz and Makowski [11], Leland et al. [13]), autoregressive processes (Cario and
Nelson [3], Granger [7]), spatial renewal processes (Taralp et al. [26]), etc. Some
of them generate asymptotically self-similar sequences and require large amounts
of CPU time. For example, Hosking’s method (Hosking [8]), based on the F-
ARIMA(0, d, 0) process, needs many hours to produce a self-similar sequence with
131,072 (217) numbers on a Sun SPARCstation (Leland et al. [13]). It requires O(n2)
computations to generate n numbers. Even though exact methods of generation of
self-similar sequences exist (for example: Mandelbrot [16]), they are only fast enough
for short sequences. They are usually inappropriate for generating long sequences
because they require multiple passes along generated sequences. To overcome this,
approximate methods for generation of self-similar sequences in simulation studies of
telecommunication networks have also been proposed (Lau et al. [12], Paxson [21]).

An important requirement for conducting simulation studies of telecommunica-
tion networks is the ability to generate long synthetic self-similar sequences of in-
cremental processes, long enough to ensure arbitrary statistical precision of the final
simulation results. Very little is known on appropriateness of selection of specific
inter-arrival processes and transformation of inter-event time intervals for arrival
counts generated by an FGN process still remains an open research issue (Leroux
and Hassan [14], Paxson [21]).

In this paper we study a transformation of count process based on the Fractional
Gaussian Noise and Daubechies Wavelets (FGN-DW) into inter-arrival processes. A
generator of such count processes, based on FGN-DW, has been proposed in Jeong
et al. [10]. Then, the inter-arrival processes are used in steady-state simulation of
queueing models with self-similar input processes.

A summary of the basic properties of self-similar processes is given in the next
section. Generation and transformations of the FGN-DW count processes are de-
scribed in Section 3. In Section 4, a case study is discussed to show how long se-
quences are needed in steady-state simulation of queueing models with self-similar in-
put processes (called SSM/M/1/∞). This is compared with simulation run lengths
of the same queueing models fed by SRD processes such as M/M/1/∞ queueing sys-
tem. The influence of the Hurst parameter on simulation run-length is also analysed,
before the final conclusions are formulated.



2 Self-Similar Processes and Their Properties

Basic definitions of self-similar processes are as follows:
A continuous-time stochastic process {Xt} is strongly self-similar with a self-similarity
parameter H (0 < H < 1), known as the Hurst parameter, if for any positive stretch-
ing factor c, the rescaled process with time scale ct, c−HXct, is equal in distribution
to the original process {Xt} (Beran [2]). This means that, for any sequence of time
points t1, t2, . . . , tn, and for all c > 0, {c−HXct1 , c

−HXct2 , . . . , c
−HXctn} has the same

distribution as {Xt1 , Xt2 , . . . , Xtn}.
In discrete-time case, let {Xk}, k = 0, 1, 2, . . . , be a (discrete-time) stationary

process with mean µ, variance σ2, and autocorrelation function (ACF) {ρk}, for

k = 0, 1, 2, . . ., and let {X(m)
k }∞k=1 = {X(m)

1 , X
(m)
2 , . . .}, m = 1, 2, 3, . . ., be a sequence

of batch means, i.e., X
(m)
k = (Xkm−m+1 + . . . + Xkm)/m, k ≥ 1.

The process {Xk} with ρk → k−β, as k → ∞, 0 < β < 1, is called exactly self-

similar with H = 1− (β/2), if ρ
(m)
k = ρk, for any m = 1, 2, 3, . . .. In other words, the

process {Xk} and the averaged processes {X(m)
k }, m ≥ 1, have identical correlation

structure. The process {Xk} is asymptotically self-similar with H = 1 − (β/2), if

ρ
(m)
k → ρk, as m → ∞.

The most frequently studied models of self-similar traffic belong either to the class
of fractional autoregressive integrated moving-average (F-ARIMA) processes or to
the class of fractional Gaussian noise processes; see Hosking [8], Leland et al. [13],
Paxson [21]. F-ARIMA(p, d, q) processes were introduced by Hosking (Hosking [8]),
where p is is order of auto-regression in ARIMA process, d is degree of differencing
in ARIMA process, and q is order of moving average in ARIMA process. Hosking
showed that these processes are asymptotically self-similar with Hurst parameter
H = d + 1

2
, as long as 0 < d < 1

2
. On the other hand, the incremental process

{Yk} = {Xk − Xk−1}, k ≥ 0, is called the fractional Gaussian noise (FGN) process,
if {Xk} represents a fractional Brownian motion (FBM) random process. This
process is a (discrete-time) stationary Gaussian process with mean µ, variance σ2

and {ρk} = {1
2
(|k + 1|2H − 2|k|2H + |k − 1|2H)}, k > 0. An FBM process is

characterised by three properties (Mandelbrot and Wallis [17]): (i) it is a continuous
zero-mean Gaussian process {Xt} defined for t ≥ 0 and 0 < H < 1, with ACF given
by ρs,t = 1

2
(s2H + t2H −|s− t|2H), where s is time lag and t is time; (ii) its increments

{Xt − Xt−1} form a stationary random process; (iii) it is self-similar with Hurst
parameter H , that is, for all c > 0, {Xct} ≈ {cHXt}, in the sense of probability
distribution. That is if time is changed by the ratio c, then {Xt} is changed by cH .

Main properties of self-similar processes include:

• Slowly decaying variance. The variance of the sample mean decreases more
slowly than the reciprocal of the sample size, that is, V ar[{X(m)

k }] → c1m
−β1

as m → ∞, where c1 is a positive constant and 0 < β1 < 1.

• Long-range dependence (LRD). A process {Xk} is called a stationary process
with LRD if its ACF {ρk} is non-summable, that is,∑∞

k=0 ρk = ∞. The speed of decay of autocorrelations is more like hyperbolic
than exponential.



• Hurst effect. Self-similarity manifests itself by a straight line of slope β2 on a
log-log plot of the R/S statistic. For a given set of numbers {X1, X2, . . . , Xn}
with sample mean µ̂ = E{Xi} and sample variance S2(n) = E{(Xi − µ̂)2},
Hurst parameter H is presented by the rescaled adjusted range R(n)

S(n)
(or R/S

statistic) where R(n) = max{∑k
i=1(Xi − µ̂), 1 ≤ k ≤ n} − min{∑k

i=1(Xi −
µ̂), 1 ≤ k ≤ n} and S is estimated by S(n) =

√
E{(Xi − µ̂)2}. Hurst found

empirically that for many time series observed in nature the expected value
of R(n)

S(n)
asymptotically satisfies the power law relation, i.e., E[R(n)

S(n)
] → c2n

H as
n → ∞ with 0.5 < H < 1 and c2 is a finite positive constant; see for example
Beran [2], Cox [4], Leland et al. [13].

• 1/f -noise. The spectral density f(λ; H) obeys a power law near the origin,
i.e., f(λ; H) → c3λ

1−2H , as λ → 0, where c3 is a finite positive constant and
0.5 < H < 1.

We will use these properties to investigate characteristics of generated self-similar
sequences.

3 Teletraffic Generation and Simulation

We claim that the FGN-DW transformation is sufficiently fast for generation of syn-
thetic self-similar sequences, to be used as simulation input data (Jeong et al. [10]).
Let us briefly introduce the FGN-DW method itself.

3.1 Generation of Self-Similar Teletraffic Using FGN-DW

General strategy behind our method is the same as in Paxson [21]. The algorithm
consists of the following steps (for more detailed discussions, see Jeong et al. [10]):

Step.1 Calculate a sequence of values {f1, f2, · · · , fn} using

f(λ; H) = cf |λ|1−2H + O(|λ|min(3−2H,2))

where cf = σ2(2π)−1sin(πH)Γ(2H +1) and O(·) represents the residual error,

fi = f̂(πi
n

), corresponding to the spectral density of an FGN process for fre-
quencies from π

n
to π.

Step.2 Adjust {fi} by multiplying them by realisations of an independent exponential
random variable with mean equal 1.

Step.3 Generate a sequence {x1, x2, · · · , xn} of complex numbers such that |xi| =√
f̂i and the phase of xi is uniformly distributed between 0 and 2π. The

random phase technique, taken from Schiff [25], preserves the distribution of
spectral density of {f̂i}, but ensures that different sequences generated using
the method will be independent. It also makes the marginal distribution of the
final sequence normal. The phase randomisation makes the different frequency
components independent (Paxson [21]).



Step.4 Calculate two synthetic coefficients of orthonormal Daubechies wavelets which
are used in the inverse discrete wavelet transform (IDWT) (Nartallo et al. [18]).
Then, generate the approximately self-similar FGN sequence in time domain
by using the IDWT from {xi}. We use the Daubechies wavelets because it
produces more accurate coefficients of wavelets than Haar wavelets (Wicker-
hauser [27]).

Using the above steps, the proposed FGN-DW method gives a fast generator
of well approximated self-similar sequences of numbers representing FGN processes
which can be interpreted as differential arrival rates.

3.2 Transformation of Self-Similar Count Processes into Inter-
Arrival Processes

Simulation studies of telecommunication networks require generation of arbitrarily
long sequences of inter-arrival times of transmitted data packets. Therefore, a mech-
anism is needed to transform self-similar processes representing the arrival counts,
or differential arrival rates (see Subsection 3.1), into the suitable sequences of inter-
arrival times of packets, while preserving appropriate characteristics. In this paper,
we use a count process generated by FGN-DW to obtain exponential inter-arrival
distribution in the way suggested by Leroux and Hassan [14]. The transformation is
based on comparison of the count values in consecutive short time intervals, called
bins. This transformation follows the following steps:

1. To obtain non-negative integers representing the bin counts, an exponential
transformation is applied to the samples to eliminate the negative values which
can occur in the original sequence representing differential arrival rates.

2. The resulting real-valued samples are rounded to the nearest integers, to get
integer values of bin counts.

3. To generate the inter-arrival time of the next packet use an exponential gen-
eration function: X = − 1

λ
∗ log(r) (Jain [9]), where r is a random number

uniformly distributed on (0, 1), and λ is the bin count from step 2. The re-
sulted distribution of inter-arrival times is controlled by a single parameter λ,
which changes from bin to bin. Because of its connection with exponential
distribution, we will call it SSM .

4 Numerical Results

The first issue is to show how well the self-similarity of the original arrival counts
is preserved when the arrival counts are converted into suitable inter-arrival times.
Assuming that preservation of self-similarity means to have coefficient H changed
by less than 10 %, our results in Table 1 - 3 show that inter-event process preserves
well the self-similarity of the original sequence generated by the FGN-DW (except
H ≤ 0.7 if it is estimated from the periodogram). Large relative differences in self-
similarity in Table 1 (as measured by H) of count processes and inter-event processes



H Count Processes Inter-Event Processes Relative Inaccuracy

0.5 .4999 .7033 40.7 %
0.6 .5960 .7416 24.4 %
0.7 .6913 .7992 15.6 %
0.8 .7883 .8427 6.9 %
0.9 .8840 .8703 1.5 %

Table 1: Ĥ estimated from periodogram plots.

H Count Processes Inter-Event Processes Relative Inaccuracy

0.5 .5398 .5932 9.9 %
0.6 .5974 .6551 9.7 %
0.7 .7067 .7223 2.2 %
0.8 .7876 .7993 1.5 %
0.9 .8565 .8708 1.7 %

Table 2: Ĥ estimated from RS-statistic plots.

H Count Processes Inter-Event Processes Relative Inaccuracy

0.5 .4991 .5633 12.9 %
0.6 .5974 .6303 5.5 %
0.7 .6895 .7121 3.3 %
0.8 .7876 .7924 0.6 %
0.9 .8532 .8620 1.0 %

Table 3: Ĥ estimated from variance-time plots.

may be caused by the analytical method used for obtaining the periodogram plot in
the frequency domain. The inter-arrival times of the packets generated according to
the exponential distribution are used in steady-state simulation of a SSM/M/1/∞
queueing system, i.e., a queueing system with a self-similar inter-arrival process
based on a time dependent exponential distribution.

The second issue is to look at how many observations are needed in sequential
steady-state simulation of a queueing system with self-similar input processes. An
M/M/1/∞ and SSM/M/1/∞ queueing systems have been simulated in AKAROA-
2 (Ewing et al. [5]), a fully automated tool of sequential simulation designed for
stopping simulation with a pre-specified statistical precision of the final results.

Figure 1 shows the number of theoretically required observations, and the mean
number of empirical observations need for stopping simulation with the required
statistical precision, for different values of traffic intensity ρ, when analysing steady-
state mean response time in an M/M/1/∞ queueing system. Each mean experimen-
tal run length of simulation is obtained from 30 replications. Confidence intervals
of relative half-widths of 10% or less, at 0.95 confidence level, are also shown in
Figure 1. While for ρ ≤ 0.6 the mean number of empirical observations is slightly
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Figure 1: Mean numbers of observations needed in analysis of steady-state mean
response time: in M/M/1/∞ queueing system with relative precision ≤ 10%, 0.95
confidence level.
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Figure 2: Mean numbers of observations needed in sequential analysis of steady-
state mean response time: in SSM/M/1/∞ queueing system with precision ≤ 10%,
traffic intensity ρ = 0.22.

higher than the number of theoretically required observations, for 0.6 < ρ ≤ 0.9
the mean number of empirical observations is lower than the number of observa-
tions required theoretically. Both numbers quickly grow as ρ → 1. The range of
the reported mean numbers of empirical observations needed is between 1,686 and
115,544.

The results in Figure 2 show that, analysis of an SSM/M/1/∞ queueing sys-



tem with self-similar input processes requires much more observations than an
M/M/1/∞ queueing system. Mean number of observations, or simulation run
length, significantly increases with H of the input stream. For ρ = 0.22, the range of
mean numbers of empirical observations for the SSM/M/1/∞ queueing system is
between 14,635 and 481,754, while the M/M/1/∞ queueing system needs between
2,169 and 2,195 observations.

5 Conclusions

We have examined two main issues of stochastic simulation of telecommunication
networks with self-similar teletraffic.

First, we looked at how well the self-similarity of the original arrival count
processes are preserved when the arrival counts are converted into suitable inter-
arrival times. Using exponential distribution as the resulted inter-arrival distribution
we have shown that the self-similarity of original counts processes can be preserved,
although more robust transformers are still needed.

Next, we looked at how many observations are needed in sequential steady-state
simulation of a queueing system with self-similar input processes. As we have shown,
assuming self-similar inter-arrival processes, one needs much more observations to
obtained the final simulation results with a required precision than when assuming
Poisson inter-arrival processes, exhibiting SRD. To secure a predefined statistical
precision of simulation final results, one would need to generate arbitrary long se-
quences of inter-arrival times, and this would need to be done sequentially. At this
stage, an algorithm for sequential generation of self-similar sequences has not been
proposed yet.
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