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Abstract

The growth of Grid computing and the Internet has been exponential in recent years. These high-speed communication
networks have had a tremendous impact on our civilisation. High-speed communication networks offer a wide range of
applications, such as multimedia and data intensive applications, which differ significantly in their traffic characteristics
and performance requirements. Many analytical studies have shown that self-similar network traffic can have a detrimental
impact on network performance, including amplified queueing delays and packet loss rates in broadband wide area net-
works. Thus, full understanding of the self-similar nature in teletraffic engineering is an important issue.

This paper presents a detailed survey of self-similar generators proposed for generating sequential and fixed-length self-
similar pseudo-random sequences for simulation in communication networks. We evaluate and compare the operational
properties of the fixed-length and sequential generators of self-similar pseudo-random sequences. The statistical accuracy
and time required to produce long sequences are discussed theoretically and studied experimentally. The evaluation of the
generators concentrated on two aspects: (i) how accurately self-similar processes can be generated (assuming a given mean,
variance and self-similarity parameter H), and (ii) how quickly the generators can generate long self-similar sequences.
Overall, our results have revealed that the fastest and most accurate generators of the six sequential and five fixed-length
sequence generators considered are the SRP-FGN, FFT and FGN-DW methods.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many studies of traffic modelling and analysis have shown that self-similar (or fractal) processes may
provide better models for teletraffic in modern communication networks than Poisson processes for the
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past decade [1-3]. If this is not taken into account, it can lead to inaccurate conclusions about perfor-
mance of telecommunication networks. Thus, an important requirement for conducting simulation studies
of communication networks is the ability to accurately generate long synthetic stochastic self-similar
sequences.

A various methods for generating pseudo-random self-similar sequences have been proposed [4,5]. Gener-
ators of synthetic self-similar sequences can be divided into two practical classes: sequential generators and
fixed-length sequence generators as follows.

1.1. An overview of sequential generators

It is possible to construct a sequential Markovian model that mimics a self-similar sequence [6,7]. However,
a disadvantage of this method is that the connection between the model’s parameters and its self-similar prop-
erties is difficult to understand. Markovian models for self-similar traffic are forced to include several control
parameters with a wide range of input values. It is also more complicated to control these values and more
sensitive to the accuracy in sequential generators than in generators of fixed-length sequences of self-similar
processes with a given Hurst parameter. For example, a method based on superposition of two state Markov-
ian processes was proposed by Andersen and Nielsen [8]. They showed that it can be used to imitate a self-
similar process with a certain Hurst parameter, over three to five time scales. However, five control parameters
are needed, and the resulted self-similarity can gradually disappear as the time scale increases. Thus, in this
respect, their method is unable to adequately model the self-similar counting processes.

Lowen and Teich [9], and Ryu and Lowen [10,11] proposed four generators (i.e., fractal-binomial-noise-dri-
ven Poisson process [FBNDP], fractal renewal process [FRP], superposition of fractal renewal processes
[SFRP], and fractal-short-noise-driven Poisson process [FSNDP]). We considered only SFRP and FBNDP
because they are more flexible, more accurate and faster at generating self-similar processes than FRP and
FSNDP, see [11,12].

A sequential generator based on the renewal reward processes, has been proposed by Mandelbrot [13] and
Taqqu and Levy [14,3]. However, we excluded that generator because it requires O(nM) computations to gen-
erate n numbers, where M is an aggregation level. Further, the generator behaves as a fractional Brownian
motion when n < M, for M > 16,000; see [14 and 3], for detailed discussions. We considered and investigated
the following efficient candidate sequential generators:

e A generator based on the fractal-binomial-noise-driven Poisson processes (FBNDP), proposed by Lowen
and Teich [9], and Ryu and Lowen [10,11];

e A generator based on the superposition of fractal renewal processes (SFRP), proposed by Lowen and Teich
[9], and Ryu and Lowen [10,11];

e A generator based on the M/G/occ processes (MGIP), proposed by Cox and Isham [15], and Cox [16];

e A generator based on the Pareto-modulated Poisson processes (PMPP), proposed by Le-Ngoc and Subra-
manian [17];

e A generator based on the spatial renewal processes and fractional Gaussian noise (SRP-FGN), proposed by
Taralp et al. [18]; and

e A generator based on the superposition of autoregressive processes (SAP), proposed by Granger [19].

1.2. An overview of fixed-length sequence generators

The most frequently studied models of self-similar traffic in the discrete-time case belong to the class of frac-
tional autoregressive integrated moving-average (F-ARIMA) processes and the class of fractional Gaussian
noise (FGN) processes because they require the Hurst parameter and variance; see [2,5,20]. F-ARIMA
(p,d,q) processes were introduced by Hosking [21], where p is the order of autoregression in the ARIMA pro-
cess, d is the degree of differencing, and ¢ is the order of the moving average. Hosking showed that the F-
ARIMA processes are asymptotically self-similar with the Hurst parameter H = d +1, as long as 0 < d < 1.
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To describe the FGN process, we first introduce the fractional Brownian motion (FBM) process By(?),
t = 0, which has a Hurst parameter H, 0 < H < 1. The FBM process is a Gaussian process with zero-mean,
stationary increments and the autocovariance function

1
Cov(Bu(n),Bu(12)) =5 4" + 6" — (1 — 1) Var[By(1)],
where ¢; and 7, are time. This is statistically self-similar in the sense that Bg(at), ¢ > 0, has the same finite dimen-
sional distributions as a”’B(t), t > 0, for all « > 0. The FGN process Y is the incremental process of the FBM
process. It is defined by Y; = By(i + 1) — By(i),i = 1, and its properties of stationarity, zero mean and variance
E[Y?] = E[B},(1)] = 03 are derived from the FBM process. The ACF of the FGN process is given by

o= 5l + 1) 2K (k1)) (1)

A different approach to generating synthetic self-similar sequences for packet traffic was proposed by Erramilli
et al. [22-24], based on deterministic chaotic maps [25]. Chaos is present in a dynamic system if simple, low
order, nonlinear deterministic equations can produce behaviour that mimics random processes. In particular,
Erramilli and Singh have shown that a simple, two parameter nonlinear chaotic map, referred to as an inter-
mittent map, can capture many of the fractal properties in actual packet traffic measurements. Clearly, the
generation of synthetic traffic via nonlinear chaotic maps makes the dynamic system’s approach to packet traf-
fic modelling particularly appealing. After an appropriate chaotic map has been derived from a set of traffic
measurements, generating a packet stream for an individual source is generally quick and easy. Deriving an
appropriate nonlinear chaotic map based on a set of actual traffic measurements, however, currently requires
considerable guessing and experimenting. We considered the following fully synthesised fixed-length sequence
generators:

e A generator based on the fractional-autoregressive integrated moving average (F-ARIMA) process, pro-
posed by Hosking [21];

e A generator based on the fast Fourier transform (FFT) algorithm, proposed by Paxson [20];

e A generator based on fractional Gaussian noise and Daubechies wavelets (FGN-DW), proposed by Jeong
et al. [26,27];

e A generator based on the random midpoint displacement (RMD) algorithm and implemented by Lau et al.
[28]; and

e A generator based on the successive random addition (SRA) algorithm, proposed by Saupe [29], in the ver-
sion implemented by Jeong et al. [30].

Our comparative evaluation of self-similar pseudo-random teletraffic generators concentrates on two aspects:
(1) how accurately self-similar processes can be generated, and (ii) how quickly the methods generate long self-
similar sequences.

We describe six sequential generators, based on FBNDP, SFRP, MGIP, PMPP, SRP-FGN and SAP in
Section 2, and five fixed-length generators of self-similar sequences, based on the F-ARIMA, FFT, FGN-
DW, RMD and SRA methods, in Section 4. Then, in Section 3 and 5 we concentrate on the least biased esti-
mators, the wavelet-based H estimator and Whittle’s MLE, as discussed in [31], when presenting the numerical
results of a comparative analysis of the generated sequences. In Section 6, the fastest and most accurate
sequential generator is compared with the most accurate fixed-length sequence generator; finally, conclusions
are presented.

2. Sequential generators
2.1. Method based on fractal-binomial-noise-driven poisson process

For the standard fractal renewal process (FRP), inter-event times are independent random variables. The
marginal probability density function (PDF) of such a fractal renewal process assumes the form
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o, 1< 4, 5
FO=sar6, (5 4, )

where 0 <9 <2 [12].

However, the resulting IDC(¢) (see [31]) has a dip near ¢ = #,, caused by the abrupt cutoff in the inter-event
time PDF. The time instant ¢y, which marks the lower limit for significant scaling behaviour in the IDC(7) and
ACEF, is also known as the fractal onset time. Furthermore, the power spectral density exhibits excessive oscil-
lations for the same reason.

Selecting ¢ in the range 1 < ¢ < 2 proves far superior to 0 < ¢ <1 for the same required value of «, but the
form of the inter-event time PDF in Eq. (2) can be further improved. The improved PDF of the FRP decays as
a power law given by

) = oA e 0<t<A,
Se 04O 1> 4,

3)

which is continuous for all ¢ and it produces smoother spectral density function than Eq. (2).

The FRP is recast as a process with real-values that alternates between two values, zero and R, R> 0 [11].
This alternating FRP starts at a value of zero (“OFF”’), and then switches to a value of R (“ON”) at a time
corresponding to the first event in the FRP. At the second such event, the alternating FRP switches back to
zero, and proceeds to switch back and forth at every successive event in the FRP. Thus, all ON/OFF periods
are IID with the same heavy-tailed distribution as in the FRP.

A method based on the fractal-binomial-noise-driven Poisson process (FBNDP) adds M IID alternating
FRPs to generate a fractal binomial noise process that serves as the rate function for a Poisson process.
The FBNDP requires five input parameters to generate self-similar sequences: 4, J, R, At and M. The resulted
Hurst parameter H assumes the value (o + 1)/2. The algorithm advances by the intervals At.

If S is a simulation clock, which advances in time and SV is the elapsed time of the jth FRP sequence, then

SV = rg/) + TY) +t r,&i) for some k and j=1,2,..., M, where r,&/) is the inter-arrival time. The sequence of
self-similar pseudo-random numbers X, X7, ... is generated by the following steps:

Step 1. For each j=1,2,..., M, generate r(({) from

o _ | =0t Aloglu(a" ("), v =1, @
0 AV (=9), V<1,
where

1 —1)e°

and U is an IID uniformly distributed random variable over the unit interval [0, 1); set SV = rg).

Step 2. Find j* and SY”) such that j* = argmin,{ SV}.
Step 3. Calculate

|

Step 4. If x = 1, then X, should be drawn from a Poisson probability distribution with 2 = 1. If x =0, then
XO = 0

Step 5. Seti=1, and y = 0. Advance the simulation clock, i.e., § « SU7,

Step 6. Construct a new inter-event time r}’ ) from

0, if SV < 4,

X 6
1, if SV > 4. (6)

9

L0 —5 'Alog[U], U =e™,
' el AU, U<e?,

and set SU) — SV 4+ V),



332 Hae-Duck J. Jeong et al. | Simulation Modelling Practice and Theory 15 (2007) 328-353

Step 7. Find a new j* such that j* = argmin;{S”}, and compute SV — 5.
Step 8. Repeat Step 6 through Step 8 to obtain x as in Step 3.
Step 9. Advance the simulation clock, i.e., S < SY”, and set y = y + x.
Step 10. Repeat Step 6 through Step 10 within time slot of length Az.
Step 11. Compute X; = POISS(y), set y=0, and i=i+ 1.
Step 12. Repeat Step 6 through Step 11 until i = n, where 7 is the number of sample points.

An approximate self-similar sequence { Xy, X, X5,...} is obtained from these steps. We assume that four
input values of the FBNDP method are 4 =9.92, R =200, M =4 to 14, and H = 0.6 to 0.9. Our results show
that the appropriate aggregate level M is between 4 and 10. These results show that no aggregation level in this
range of M is consistently better than others. Without studying whether the marginal probability distributions
of these mixtures of Poisson processes are close enough to normal distributions, we chose the aggregate level
of M =10, when comparing this generator with others in Section 3. Thus, the problem of selection of M for
securing normality of marginal distributions of the output processes from such a generator remains an open
problem.

Note that, for small input values of / of Poisson processes, only the Poisson approximation can be used,
but for large input values of 1 we can use either the normal or the Poisson approximation. This implies that for
large values of A it must be possible to approximate the Poisson distribution by the normal distribution; see
[32, p.190] for details.

Generation of a sample sequence of 1,048,576 numbers (so, about 524 x 10° inter-event times) took 9 min
38 s on a Pentium II (233 MHz, 512 MB). The FBNDP method requires O(n) computations to generate n
numbers. For a more detailed discussion, see [12].

2.2. Method based on superposition of fractal renewal processes

The fractal renewal process (FRP) was described in Section 2.1. This self-similar process results from the
superposition of a number of independent and identical FRPs. We now consider a method based on the super-
position of fractal renewal processes (SFRP), proposed by Lowen and Teich [9] and Ryu and Lowen [10,11].
This method is defined as the superposition of M independent and identical FRPs. The method is character-
ised by M and the common inter-event PDF in Eq. (3). This method requires three parameters, i.e., o and 4
from the individual FRPs, and M, the number of FRPs superposed. The resulted Hurst parameter H, and
mean u and variance o> of the marginal output distribution of a related count process in the unit time interval,
are given by H = (a+ 1)/2, u = E[X,] = 4, 0> = Var[X,] = (1 + (1/15))*), where

A=Mo[l+(6—1)"e?] 4!
is the aggregated arrival rate of events in the unit time interval, and
=216 -1)"'2=8)(3=0)e [l + (6 — 1)e’)4*)"*,

that is the value of time at which the resulting IDC(¢) has a dip.

IfSi 1s a s1rnulat10n clock which advances in time and SV is the elapsed time of the jth FRP sequence, then
SV = ro + rl T rk ) for some k and j=1,2,..., M. The inter-event times X; are generated by the follow-
ing steps:

Step 1. Foreachj=1,2,...,M, and i =0, generate ro ) from Eqs (4) and (5) in the FBNDP; set SV = ré’).

Step 2. Find j* such that J = argmin, {S(’)} and set X, = SV,

Step 3. Advance the simulation clock, i.e., § — SY7.

Step 4. Sft i= 1 + 1. Construct a new 1nter event time r(’ from Eq. (7) in the FBNDP and set SV
SV 4 ‘c

Step 5. Find a new ;j* such that j* = argmin; A8V}, and compute X; = SV — .

Step 6. Advance the simulation clock, i.e., S — SU".

Step 7. Repeat Step 4 through Step 6 until a given i = n is reached, where n is the number of sample points.
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Using the previous steps, this method generates an approximate self-similar sequence { X, X5,...}. This
method produces the most accurate result when the aggregation level M is between 4 and 10. It took
22 min, 44 s to generate a sequence of 1,048,576 numbers (so, about 1362 x 10° inter-event times) on a Pentium
IT (233 MHz, 512 MB). The results were obtained assuming M = 10 and 4 = 3.8. The SFRP method requires
O(n) computations to generate n numbers. For a more detailed discussion, see [12].

2.3. Method based on M|/Gloo processes

An M/G/ is a queueing system in which a server is available immediately for every arriving customer,
regardless of how many customers are already being served. Applying this process to generate LRD count
sequences, we assume that new arrivals can enter M/G/oco only at the beginning of time slot of length Ar.
Let us call this method as MGIP. The method is based on simulation of customers that arrive at an infi-
nite-server queueing system according to a Poisson process with an arrival rate A. This method generates
asymptotically self-similar sequences obtained from counting the number of customers from unlimited servers
in the system, where the service time distribution G satisfies the heavy-tailed condition [16,22,33]. Cox [16]
showed that an infinite variance service time distribution results in an asymptotically self-similar process.
Likhanov et al. [34] proposed a model for aggregate packet streams, based on combining sequences generated
by several ON/OFF sources with a Pareto-distributed ON period. They showed that increasing the number of
sources yields a limiting behaviour identical to the M/G/oc input sequence with a Pareto distribution. To
implement their findings we need to assume a given coeflicient utilisation of the queueing system p,
0 < p <1, and a Pareto distribution of service times with finite mean service times and infinite variance of ser-
vice times, i.e., with the shape parameter o, 1 <o < 2. The simulation will be advanced each time by A¢ sec-
onds. Then, the MGIP method consists of the following steps:

Step 1. Given p, o, At, i =1.

Step 2. Simulate performance of an M/G/oco queueing system over Ar seconds. This means, generate
pseudo-random numbers representing the number of Poisson arrivals to the M/G/co queueing sys-
tem within At seconds, and pseudo-random numbers from the Pareto distribution representing ser-
vice times of these customers. Assume arrival rate 4 = p(a — 1)/a, where p is traffic intensity and o is
the shape parameter of the Pareto distribution, and service rate (o — 1)/a.

Step 3. Count the number of customers in the simulated M/G/oco queueing system at the end of this time slot
of length A¢. This is X, the ith number of the output LRD self-similar sequence in the scale Az. LRD
sequences in larger time scales, say s, can be obtained by counting number of customers in the sys-
tem at the end of each s time slots, i.e., by assuming a time lag equal to At.

Step 4. Set i =i+ 1. Repeat Step 2 to Step 4, advancing the simulated time by the next Az seconds, until
i < n, where n is the number of sample points. Otherwise, stop.

A self-similar sequence { X}, X>,...} is obtained from these steps. We assume the MGIP method with input
traffic intensity p = 0.9 and service rate u = (o — 1)/a, where o« =3 — 2H, for H=0.6, 0.7, 0.8 and 0.9, and
time lag s =4 to 14. Our results show that this method is most efficient at time lag s between 4 and 8. Gen-
eration of an asymptotic self-similar sequence with 1,048,576 numbers with these time lags took 27 s on a Pen-
tium II (233 MHz, 512 MB). O(n) computations are required to generate a self-similar sequence.

2.4. Method based on Pareto-modulated poisson processes

This method is based on the fact that a Pareto-modulated Poisson process (PMPP), based on a switched
Poisson process with two states, with sojourn times governed by an independent and identical Pareto distribu-
tion, asymptotically generates a self-similar sequence [17]. Fig. 1 shows a state diagram of the PMPP. The two
states of the switched Poisson process can be viewed as intervals with the long and short burst rates of events.
This process goes through consecutive cycles of being in State 1 and State 2. The time spent in each cycle is
governed by a Pareto distribution characterised by o, 1 <« < 2. These cycles have the mean length (ML) equal
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State 1 State 2

"

Fig. 1. State diagram of the Pareto-modulated Poisson process [17]. It is a two-state switched Poisson process with the sojourn time in
each state following an independent and identical Pareto distribution.

ML — o o

o oc—lzoc—ltlmeumts' (8)

Mean numbers of Poisson events (MNPE) generated in state S; and state S, are:

o
11—, and
o—1

o 9)
u—1"

Thus, mean number of Poisson events per cycle is given by

MNPE in state S; = 4

MNPE in state S, = 4

, o , o o

Alo(fl—i_/bzocfl_(}'l—‘r;vz)ﬁ’ (10)
and using Eqgs. (8) and (10), we get the mean number of Poisson events per time unit as

E:L;M. (11)

As mentioned the PMPP can be used to generate asymptotically self-similar sequences. The quality generated
sequences, in the sense of the closeness to exactly self-similar processes, depends on the size of frames within
which one counts numbers of Poisson events occurring in underlining PMPP, see Fig. 2. If frames have length
T seconds, then the mean number of Poisson events occurring in a frame can be called the aggregation level of
that method, given as

N=Ex*T, (12)

where E is the number of events per second. There should exist the minimum acceptable aggregation level Ny,
below which this method would not generate satisfactory self-similar sequences, but we leave this issue for fur-
ther research. In our investigations we assume A; =100, 1, =120, and 7 > 100. Thus, we assume
Numin = 11,000. The PMPP generator follows of the following steps: For a given 4;, 4, o, T and n, let S be
the time advance.

Step 1. Seti=1,k=1,5=0,x"=0.

Step 2. Generate the sojourn times 7, and 7, | for state Si mod 2 and S(x+1) mod 2 of PMPP using the Pareto
distribution with shape parameter o,1 <o <2.
Produce a sequence of Poisson arrivals within each state S; with rate 4, j=1, or 2.
Calculate S =S+ 7 + 1441 if S = iT then go to Step 3, otherwise assume k =k + 1 and repeat

Step 2.
L A cycle .
- Ll
State 1 State 2 State 1 State 2 State 1
gl | .y | .y | | -y | -
« L] Ll Bl Ll Bl >
—0—0- ol ik F3 o—O- Py & F % 2k E3 O —O- | -
|
< > Time
X1 events (in Frame 1) X2 events (in Frame 2)

Fig. 2. Graphical explanation of the concept of data aggregation in the generator based on PMPP. Note that @ is an event in Poisson
process with rate 4, and * is an event in Poisson process with rate 4,. X; is the number of Poisson events occurring in Frame i.
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Step 3. Count X f-l), the number of events that occur in the last frame of the length of 7" seconds.

X, =x" 4 x. (13)

Count the number of events that occur in the remaining time interval (i 7, S). This is X 53)1, the initial

component of X;y;. If i <n then assume i =i+ 1, go to Step 2. Otherwise if i = n, then stop (the
required number of pseudo-random self-similar numbers has been generated).

We compare this generator with others in Section 3, assuming 7' = 300. Generating a sample sequence of
1,048,576 numbers took 7 min, 11 s on a Pentium II (233 MHz, 512 MB). The PMPP method requires O(n)
computations to generate n numbers. For a more detailed discussion, see [17].

2.5. Method based on spatial renewal processes and fractional gaussian noise

The SRP-FGN generator is a hybrid method that uses a fractional Gaussian noise (FGN) generator based
on the spatial renewal process (SRP) developed by Taralp et al. [18]. Before discussing SRP, we first introduce
the concept of sub-exponentiality. It means that the ACF of a stationary process decays not exponentially, but
hyperbolically, for large lags [35]. For example, Jelenkovi¢ [36] observed distinctive sub-exponential charac-
teristics of MPEG video traffic in the functional behaviour of its scene length distributions.

The SRP belongs to a class of sub-exponentially time-dependent stochastic processes. The SRP Z is com-
posed of a chain of mutually independent renewal periods. For practical reasons, it is assumed that the SRP is
a discrete time process and its ith period 7; has length k,, where k; is an integer, and the sample of Z during the
period is represented by a sequence of k; numbers Yy, Y,,..., Y, governed by the normal distribution. The
consecutive number of the output self-similar time series X ,-Zf":l Y,

To improve statistical properties of the output sequence (it fit to normal distribution and the required cor-
relation function), it has been proposed to aggregate a number of such sequences [18]. We investigated this
suggestion experimentally by considering various levels of aggregation. Our results also show that the SRP-
FGN method is most accurate if the level of aggregation M = 10, supporting the advice of Taralp et al.
[18], who wrote that the aggregation level needs not be high (i.e., ~10) to obtain accurate results.

The aggregate output sequence { X, X5,...} is computed by after having summed the sequences and nor-
malisation of the sample variance to one. The SRP-FGN model has a normal marginal distribution, and is
characterised by a sub-exponential ACF. Fig. 3 shows a block diagram of the SRP-FGN generator, which
consists of the following steps:

Step 1. Given H,n, M, i=0,m=0,s=0,/=1, X, =0.

Step 2. Generate a random length k; of the renewal cycle T; governed by the following a cumulative prob-
ability distribution function Fx{(k).

(14)

0, 0
Fr(k) = 1 — H{G ) oo e )2

(LR )

11— Inverse

> normal CDF

01
Uniformly distributed
random numbers

Inverse

1 >
1 renewal CDF]

01 : ’ X
Uniformly distributed —> ?égregate
random numbers Independent > N sequence

FGN sequences

Fig. 3. Block diagram of the SRP-FGN method [18].
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Step 3.

Step 4.

Step 5.
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The SRP Z is composed of a chain of renewal periods where the ith period 7 is k; in length. Gen-
erate k; random numbers Y, Y,,..., Y, governed by the normal distribution. Set m =m + k;. If
m < M, then X; :Xi—&—Zf’:le, set s =5+ m, and go to Step 2. If m > M, then set m=m — M,
and go to Step 4.

The output value X; is computed as follows: If s =0, then X; = >
then X; = X; + >"/'1'Y;, and set s = 0.

Set i=i+1, and X;=0. If i<n and if m =0, then go to Step 2. Otherwise,— if m < M, then
X, = Zf":kﬁmﬂY/, set s=m, =1, and go to Step 2.— if m > M, then set m=m — M, s=0,
[=1+1, and go to Step 4. If i = n, where n is the number of sample points, then stop.

M

imii—m1Y > and set s =0. If s > 0,

This generator produces approximately self-similar sequences { Xy, X1, X,...}. We obtained the points of
the inverse renewal CDF using Eq. (14). In order to obtain more accurate results of the tail behaviour, we
chose a number of intervals, 7= 10,000, for the renewal CDF. The SRP-FGN renewal CDF Fi) and com-
plementary CDF are plotted in Figs. 4 and 5. F(i) gradually has longer tails as the H value increases. The
SRP-FGN method generates sample sequences { X7, X>, ..., X,,} with O(n). It took 26 s to generate a sequence
of 1,048,576 numbers on a Pentium II (233 MHz, 512 MB).

0.8}
a
g o6t
=
3
2
S 04}
,
0.2f —— H=06
—— H =07
—— H =08
0 ) ) ) —=— H =09
0 5 10 15 20
Time

Fig. 4. Cumulative distribution function F(i) of the SRP-FGN method for H = 0.6, 0.7, 0.8 and 0.9.
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Fig. 5. Complementary cumulative distribution function of the SRP-FGN method for H = 0.6, 0.7, 0.8 and 0.9.
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2.6. Method based on superposition of autoregressive processes

The method based on the superposition of autoregressive processes (SAP) proposed by Granger [19] gen-
erates asymptotically self-similar sequences when aggregating several independent autoregressive processes. In
the simplest case this can be the sum of two autoregressive processes of the first order:

zy; = Auzii-1 + Vi, (15)
zy = Auzoi + ¥y i=1,2,. ..
where 4; and A,; are randomly chosen from a beta distribution B(o, ;) on [0, 1] with shape parameters o
and o, where o; > 0, a, > 0. yq; and y»; are a pair of IID sequences of random variables with a mean of zero
and variance ¢* = 1.

As shown in [19], using the least-square fitting it can be found that o, = 7.7929 * log(H) + 4.9513. Thus, the
Hurst parameter H is linearly dependent on the shape parameter o, of the beta-distribution, while «; can be
selected arbitrary, for example, o; = 1 in all cases that we investigated.

The PDF f{x) of the beta distribution is given by

x"l’l(lfx)"Z’l
flx) = Forsy 0 <x <1, (16)
0, otherwise,

where (o, 05) is defined by

1

_ _ F(OC])F(OQ)

a,)= [ ¥ (1 —x)2 T dy = L2

lonoe) = [ (1= o

This method, as based on the superposition of the autoregressive processes, consists of the following steps:
Given: oy, o, i =0.

Step 1. Set i =i+ 1. Determine z;; and z,; using Eq. (15).
Step 2. Calculate the sum,

Xi:ZIi+22i7 121,2,
Step 3. Repeat Step 1 and Step 2 until i = n, where n is the number of sample points.

Using the previous steps, the method based on the superposition of the autoregressive process generates an
asymptotically self-similar sequence { X7, X>,...}. The CPU time required to generate 1,048,576 numbers was
35 s on a Pentium II (233 MHz, 512 MB). Unlike the other sequential generators, the SAP generator does not
require an aggregation level to be assumed as an input parameter, but such input parameters as the shape
parameter o, instead.

3. Comparison of sequential generators

All six sequential generators based on FBNDP, SFRP, MGIP, PMPP, SRP-FGN and SAP, generate
approximately self-similar sequences. We investigate their properties in greater detail in this section. All have
been implemented in C on a Pentium II (233 MHz, 512 MB) computer. The mean times required for gener-
ating sequences of a given length were obtained using the SunOS 5.7 time command and were averaged over
30 replications, each with sequences of 32,768 (2'°), 65,536 (29), 131,072 (2!7), 262,144 (2'®), 524,288 (2!°) and
1,048,576 (2*°) numbers.

We have analysed the accuracy of the six methods. For each of H=0.5, 0.6, 0.7, 0.8 and 0.9, sample
sequences generated were analysed as follows. The FBNDP process was analysed with input M = 10,
R =200, and cutoff parameter 4 =9.92; the SFRP method required the following three parameters:
M =10, H=0.6,0.7, 0.8 and 0.9, and cutoff parameter 4 = 3.8; the M/G/oo process (MGIP) with input traf-
fic intensity p = 0.9, service rate u = o/(o — 1), where o =3 — 2H, and time lag s = §; the Pareto-modulated
Poisson process (PMPP) with input 7'=300, 4, =100 and A, =120; the SRP-FGN methods with input
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M =10, and the interval number of the renewal CDF (7) = 10,000. The input of the superposition of the
autoregressive process (SAP) with a beta-distribution (B(«y,a;)) on [0,1] was B(1,2.9), B(1,8.1), B(1,21.3),
and B(1,71.5).

3.1. Accuracy of generated sequences

A “good” estimator is not only one which produces an estimate whose expected value is close to the true
parameter (low bias), but also one which has small variance. A comparative analysis of the most frequently
used H estimation techniques, the wavelet-based H, Whittle’s MLE, periodogram, R/S-statistic, variance-time
and IDC(¢) estimators, has been done [31]. The results have shown that the wavelet-based H estimator and
Whittle’s MLE are the least biased of the H estimation techniques. Thus, the least biased estimators were con-
sidered when presenting the numerical results of a comparative analysis of the generated sequences. For each
of H=10.6, 0.7, 0.8 and 0.9, and for each of «, =2.9, 8.1, 21.3 and 71.5, all results are averaged over 30
sequences. The relative inaccuracy AH was calculated using

H-H

AH = + 100%, (17)

where H is the exact value assumed and H is its empirical mean value.

(a) Table 1 shows the results of the six sequential methods using the wavelet-based H estimator with the
corresponding 95% confidence intervals H + 1.966;. For all input H and «, values, the SRP-FGN

method produced sequences with the least biased H values compared with the other six methods.

For H = 0.6, 0.7 and 0.8, the absolute relative error for the FBNDP method was less than 5%, but for H = 0.9,
it was greater than 5% (i.e., —5.5%). For H = 0.6, the estimated H value for the method was positively biased,
but for H=10.7, 0.8 and 0.9, were gradually more negatively biased as the H value increased.

For H=10.6, 0.7, 0.8 and 0.9, each relative error for the SFRP method was +2.76%, +1.29%, —0.17% and
—3.49%, respectively. As in the FBNDP method, estimated H values for the method ranged from positively
biased to negatively biased as the H value increased.

A shortcoming of the MGIP method was that it generated approximately self-similar sequences with strongly
biased H values. For H=0.6, 0.7, 0.8 and 0.9, each relative error was —9.25%, —10.84%, +2.42% and
+23.5%, respectively. Although these inter-event processes can be used to produce synthetic teletraffic with
bursts appearing over a wider range of time scales than Poisson processes, the associated arrival processes
do not appear to be self-similar when the aggregation level is low [37,38].

For H=0.6, 0.7, 0.8 and 0.9, the values of the Hurst parameter from the sample sequences of the PMPP
method were lower than the desired values. Each relative error was —1.27%, —2.22%, —1.23% and —3.77%,
respectively. Furthermore, this method required four control parameters (i.e., two Poisson arrival rates 1,

Table 1

Mean values of estimated H using the wavelet-based H estimator for the six sequential generators for H = 0.6, 0.7, 0.8 and 0.9. We give
95% confidence intervals for the means in parentheses

Methods Mean values of estimated H and AH

0.6 0.7 0.8 0.9

H AH(%) H AH(%) H AH(%) H AH(%)
FBNDP 6086 (.581, .636) -+1.440 .6875(.660,.715) —1.789 7827 (.755, .810) —2.157  .8502 (.823, .878) —5.538
SFRP 6166 (.589, .644) +2.759 7091 (.682, .737)  +1.296 .7986 (.771, .826) —0.174  .8686 (.841, .896) —3.491
MGIP 5445 (517, .572)  —9.252  .6241 (.597, .652) —10.84  .8194 (.792, .847) +2.424 1.1120 (1.084, 1.139) +23.50
PMPP .5924 (.565, .620) —1.266 .6845 (.657,.712)  —2.221 .7902 (.763, .818) —1.229  .8661 (.839, .894) —3.766
SRP-FGN  .5942 (.567, .622) —0.968 .6960 (.669, .724)  —0.569 .8056 (.778, .833) +0.700  .9031 (.876, .931) +0.344
SAP .5989 (.595, .603) —0.182 .6852 (.680,.690) —2.112 .7845(.781,.788) —1.937  .8971 (.894, .900) —0.325
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and 4,, an aggregation number M, and the shape parameter o), and generated a self-similar sequence that was
positively biased to negatively biased as the shape parameter o approached one.

For H=0.6, 0.7, 0.8 and 0.9, the values of the Hurst parameter from the sample sequences of the SRP-FGN
method match the required values well. For H = 0.6, 0.7, 0.8 and 0.9, each relative error was —0.97%, —0.57%,
+0.70% and +0.34%, respectively.

For o, =2.9, 8.1, 21.3 and 71.5, all values of the Hurst parameter from the sample sequences of the SAP
method were lower than the required values. Each relative error was —0.18%, —2.11%, —1.94% and
—0.33%, respectively.

(b) Table 2 shows the results of the six sequential methods using Whittle’s MLE with the corresponding 95%
confidence intervals H + 1.96&;. As for the results obtained from the wavelet-based H estimator, the
SRP-FGN method produced sequences with the least biased H values compared with the other six
methods.

For H = 0.6 and 0.7, the absolute relative error for the FBNDP method was less than 3%, while for H = 0.8
and 0.9, it was greater than 5% (i.e., —5.53% and —9.29%). For H = 0.6, the estimated H value for the method
was positively biased; and for H = 0.7, 0.8 and 0.9, they gradually became more negatively biased as the H
value increased.

For H=0.6,0.7, 0.8 and 0.9, relative error for the SFRP method was +6.21%, +1.78%, —1.43% and —5.37%,
respectively. As in the FBNDP method, estimated H values ranged from positively biased to negatively biased
as the H value increased.

A shortcoming of the MGIP method was that it generated approximately self-similar sequences with biased H
values for H = 0.7, similar to results obtained from the wavelet-based H estimator. For H = 0.6, 0.7, 0.8 and
0.9, relative error was —8.0%, —9.6%, —3.2% and +5.5%, respectively.

For H = 0.8 and 0.9, the values of the Hurst parameter from the sample sequences of the PMPP method were
lower than the required values, but for H = 0.6 and 0.7, they were higher. Relative error for H = 0.6, 0.7, 0.8
and 0.9 was +7.18%, +2.24%, —1.28% and —5.59%, respectively. This method generated a self-similar
sequence that ranged from negatively biased to positively biased as the shape parameter o approached one.

For H=0.6,0.7,0.8 and 0.9, the Hurst parameter values from the sample sequences of the SRP-FGN method
match the required values well. For H = 0.6, 0.7, 0.8 and 0.9, relative error was +0.11%, +1.91%, +2.54% and
+2.53%, respectively. The results were consistently overestimated.

For o, = 2.9 and 8.1, all values of the Hurst parameter from the sample sequences of the SAP method were
higher than the required values. Relative error was +24.14% and +10.45%, respectively; thus, these results
were overestimated. For o, = 21.3 and 71.5, relative errors was —0.01% and —8.45%.

Our results show that all six sequential generators produced approximately self-similar sequences, but that
relative inaccuracy (|JAH|) increased as H increased.

Table 2
Mean values of estimated H using Whittle’s MLE for the six sequential generators for H = 0.6, 0.7, 0.8 and 0.9. We give 95% confidence
intervals for the means in parentheses

Methods Mean values of estimated H and AH
0.6 0.7 0.8 0.9

" AH%) H AH(%) H AH%) H AH(%)
FBNDP  .6122(.603, .622)  +2.028 .6828 (.674, .692)  —2.452 7557 (747,.765) —5.531 8164 (.807, .826) —9.291

)
SFRP .6372 (.628, .647) +6.205 7124 (.703, .722) +1.777 7886 (.779, .798) —1.426 8517 (.843, .861) —5.366
MGIP .5520 (.542, .562) —7.995  .6325 (.623, .642) —9.641 7742 (.765, .783)  —=3.225 9499 (.941, .959) +5.549
PMPP .6431 (.634, .652) +7.176 7157 (.706, .725) +2.236 7898 (.781,.799) —1.281  .8497 (.841, .859) —5.586
SRP-FGN  .6007 (.591, .610) +0.110 7133 (.704, .723) +1.905  .8203 (.811, .829) +2.539  .9227 (914, 932) +2.526
)

SAP 71448 (.736, .754) +24.14 7731 (764, .782)  +10.45 7999 (.791, .809)  —0.009  .8239 (.815, .833) —8.451
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3.2. Complexity and speed of generation

Performance analysis of a generator can be classified into two types: time complexity and space complexity.
Time complexity refers to a function describing how much time it will take the generator to execute, based on
the parameters of its input. The exact value of this function is usually ignored in favour of its order, expressed
in the so-called Big-O notation (this is based on the limit of the time complexity function as the values of its
parameters increase without bound.) Space complexity is the way in which the amount of storage space
required by the generator varies with the size of the problem it is solving. The space complexity is normally
expressed as an order of magnitude, e.g. O(n?) means that if the size of the problem (n) doubles then four times
as much working storage will be needed. The time complexity was only considered in this paper.

The computational complexities of all six sequential generators of pseudo-random self-similar sequences of
a given length n are O(n). However, the number of arithmetic operations per number required by each of them
are different, as shown in Table 3. The MGIP, SAP and SRP-FGN methods are the fastest of the six sequential
generators requiring 4976, 4481 and 4173 operations per number, respectively. While the SFRP method was
the slowest (85,199 operations per number), the FBNDP and PMPP methods require similar amounts of time
to generate the same number of self-similar sequences, requiring 11,028 and 19,507 arithmetic operations per
number, respectively.

Fig. 6 shows the experimental mean running times of the six sequential generators. All require O(n) com-
putations to generate n numbers.

In summary, our results show that the generator based on the SRP-FGN algorithm is the fastest if long
sequences of self-similar pseudo-random numbers are required. The MGIP and SAP methods are nearly as

Table 3
Computational complexities and arithmetic mean operations required for each of the six sequential generators (s: the time lag in the M/G/
oo queueing system, M: aggregation level, T: the number of intervals in the renewal CDF)

Method Complexity Operations per number Mean operations per number when assuming optimum values
FBNDP O(n) 161 M + 9418 11,028
SFRP O(n) 1378 M + 71,419 85,199
MGIP O(n) 130s + 3936 4976
PMPP O(n) 130M + 4037 19,507
SRP-FGN O(n) 14T + 4159 4173
SAP O(n) 4481 4481
18,

—<— FBNDP
16H —+— SFRP
—— MGIP
14H —— PMPP
—o— SRP-FGN
12 —=— SAP

10 -

log, (Mean Running Time in Seconds)
oo}
T

15 16 17 I8 19 20
log, (Sequence of Numbers)

Fig. 6. Mean running times of the six sequential generators. Running times were obtained using the SunOS 5.7 time command on a
Pentium II (233 MHz, 512 MB); each mean is averaged over 30 iterations, each with sequences of 32,768 (2'%), 65,536 (2'%), 131,072 (2"7),
262,144 (2'%), 524,288 (2') and 1,048,576 (2°°) numbers.
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fast. The SRP-FGN generator is also the most efficient when evaluated by Whittle’s MLE. Therefore, the
SRP-FGN generator was compared with the most efficient fixed-length sequence generator, which we discuss
in Section 6. However, as pointed out in [39] there are general pitfalls in using generators of LRD processes
based on FRPs, since the generated processes fail to capture fully the required autocorrelation structure. For a
more detailed discussion, see [39].

4. Fixed-Length sequence generators
The numerical results for the following fixed-length sequence generators are given in Section 5.
4.1. Fast fourier transform method

The fast Fourier transform method generates approximately self-similar sequences based on the fast Fou-
rier transform (FFT) and the fractional Gaussian noise (FGN) process. Its main weakness is in the accuracy of
the power spectrum calculation, which involves an infinite summation. Paxson [20] has proposed a solution to
this problem by applying a finite approximation. Another possible method to generate self-similar sequences is
to run the FFT of white noise through the power spectrum, and then apply the inverse FFT. An overview of
the FFT method is given as follows. For a more detailed discussion, see [20,30,40].

Step 1. Given: H. Start for i=1 and continue until i = n/2. Calculate a sequence of values {fi,..., f1}s
where f; = f (% JH ), corresponding to the power spectrum of an FGN process for frequencies from
2 to m, 1/2<H <1, and the total length of the sequence generated, n. For an FGN process, the
power spectrum f{/, H) is defined by Eqs. (18) and (19).
S(AH) =2c/(1 — cos(1))B(A,H) (18)
with 0 < H<1 and —7 < A < &, where
¢y = *(2n) 'sin(nH)T(2H + 1),

o 19
B(LH) = > [2mk+ 2", (19)

k=—00

and ¢ = Var[X,] and I'(") is the gamma function; see [41]. As mentioned, the infinite summation in
Eq. (18) for B(A, H) poses the main difficulty in computing the power spectrum exactly. Paxson [20]
proposed to use the approximation given by Eq. (20):

a§ + b5 +af +bi

B(,H) = af + b +af + b3 +af + b + SHn : (20)
where d= -2H — 1,d = —2H, a;=2in + A, b; = 2in — A.
Step 2. Multiply the sequence of values {f}, ..., ﬁ} by an exponential random variable with a mean of one.

Paxson [20] used this step since, when estimating the power spectrum of a process using the period-
ogram, the power spectrum estimated for a given frequency is distributed asymptotically as an expo-
nential random variable with a mean equal to the actual power (see also Beran [42, (p. 409))).

Step 3. Generate {Z), ... ,Z%}, a sequence of complex values such that |Z;| = \/]7, and the phase of Z; is uni-

formly distributed between 0 and 2r. This random phase technique, taken from Schiff [43], preserves
the spectral density corresponding to {f;}. It also makes the marginal distribution of the final
sequence normal, as proved by Lindeberg ([44, p. 256]), and defines the requirements for FGN.

Step 4. Start for i=0 and continue until i<n. Construct {Z,...,Z, ,}, an expanded version of
1Z,..., Zs}:
0, if i =0,
Zi=¢Z, if0<i<j, and (21)

Zo, if2<i<n.
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where Z,_; denotes the complex conjugate of Z, ;. {Z!} retains properties of the power spectrum
used to construct {Z;}, but because {Z'} is symmetric about Z%, it now corresponds to the FFT
of a real-valued signal. i

Step 5. Calculate the inverse FFT {Z’} to obtain the approximate FGN sequence {X;} with a mean of zero
and variance of one. Then form the final sequence Xy, X,..., X, by assigning X; — Z}, i=1,2,...,n.

This method generates an approximately self-similar sequence {Xi,X>,...,X,,} with the exact values.
Generating a sample sequence of 1,048,576 numbers took 33s on a Pentium II (233 MHz, 512 MB).
The FFT method requires O(nlogn) computations to generate n numbers because of the Fourier transform
algorithm [20,45]. The Danielson-Lanczos’ FFT' algorithm was used [46]. For a more detailed discussion,
see [20].

4.2. Fractional-Autoregressive integrated moving average method

Hosking [21,47] states that the F-FARIMA method? is used to generate an approximately self-similar pro-
cess with a Hurst parameter of H = d + 3. We used the F-ARIMA(0,d,0) method for generating self-similar
sequences, where d is the fractional differencing parameter, 0 < d < 1. Hosking’s algorithm is used to generate
the process X = {X;:i=0,1,2,...,n} with a normal marginal distribution, a mean of zero and variance a3,
and an autocorrelation function (ACF), {pi}(k=0,%1,...) defined as
rl—-dyrk+d
Irdyrk+1-d)

k
I S WAL
"Tk—d+1)I(1 —k—d)

Pe = Vel V0 = , where (22)

; see[47] and page 63 on[41].

Step 0. Set No =0 and Dy = 1. X, the first pseudo-random element in the output self-similar sequence, is
generated from the normal distribution N (0, ¢3), where o7 is the required variance of the X;.
Stepi (i=1,...,n—1.) Compute mean; and Var; of X; recursively, using the following equa-
tions:N; = p;, — Z;ll ®i1;0ij» Di = Dioy = N} /Dizy, iz = Ni/ Dy, iy = i1 j— bustbicripf = 1, .-,
i—1, where ¢, i=0,j=0,...,n— 1, is given by

<i>(j—d—l)!(i—d—j)!
i) d=Dli—ad)l

mean; = Z;:ltf)in iy, var; = (1 — qui)var,-,l. Generate X; from N(mean;,var;). Increase i by 1. If
i = n, then stop.

¢ij -

A self-similar sequence {X1,X5,...,X,} is obtained in n steps. The F-ARIMA method is too computation-
ally intensive to generate long sample sequences. Generation of an F-ARIMA traffic sample sequence with
1,048,576 numbers took 41 h, 0 min and 22 s on a Pentium II (233 MHz, 512 MB). This method requires
O(n?) computation time.

4.3. Random midpoint displacement method

The random midpoint displacement (RMD) method generates an approximately self-similar sequence in the
time interval [0, 7]. The RMD algorithm is an approximate fractional Brownian motion (FBM) generation
method. The basic concept of the RMD algorithm is to interpolate the interval [0, 7] recursively and calculate
the values of the process at the midpoints from the values at the endpoints.

! Available at http://ita.ee.lbl.gov/.
2 The autocorrelation functions of two other simple processes, F-ARIMA(1,d,0) and F-ARIMA(0,d, 1), behave similarly at high lags,
but the F-ARIMA(0, d, 1) autocorrelation function drops more sharply between lags 1 and 2. For a more detailed discussion, see [47].
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Fig. 7 illustrates the first three steps of the process. This method leads to the generation of the sequence
(d3.1,d5 2, d3 3,d3 4). The interval between 0 and 1 is subdivided to construct the increments governed by a nor-
mal distribution. Adding offsets to the midpoints makes the marginal distribution of the final result normal.
For more detailed discussions of the RMD method, see [28,30,48].

Step 1.

Step 2.

Step 3.

Step 4.

If the process Y is to be computed for any time instance ¢ between 0 and 1, then begin by setting
Yo =0 and selecting Y; as a pseudo-random number from a normal distribution with mean 0
and variance Var[Y,] = 3. Then Var[Y; — Y| = a2.

Next, Y ! is constructed as the average of Yy and Yi, thatis, ¥ y = (Y o+ Y1) +d,. The offset d; is a
normal random number (NRN), which is multiplied by a scahng factor with mean 0 and variance

52 of dy. Compare the visualisation of this step and the next one in Fig. 7. For
Valr[Y,2 -Y,)=1t- t1|2HUS to be true for 0 < #; < 1, < 1, then

1 2 N o, @
Var{Yl— } :ZVar[ — Yo + 57, 3 oO—Zao—i—S

5 2H
Thus S} = (2%) (1-
Reduce the scaling factor by v/2; that is, now assume ﬁ, and divide the two intervals from 0 and %

22H72)a§.

and from l to 1 again. ¥ 1 is set as the average ; 1 (Y 0o +Y 1) plus an offset d5 ;, which is an NRN mul-
tiplied by the current scalmg factor - NG The corresponding formula holds for Y3 that is,

1
Y; = 2(Y1+Y1)+d22,

™

where d, , is a random offset computed as before. Therefore, the variance S% of d, . must be chosen
such that

1 , 1 2H s 1/1 2H , R
Var[Yl — :| :ZVar[Yl Y():| +S27 (;) O'O :Z(E) O'O+S2.

2H
Thus 8% = (2%) (1—222)g2.

Proceed in the same manner: reduce the scaling factor by v/2, that is, scale by ﬁ Then set

1 1
Yzi(Y()—FY%)—Fd“, Y%ZE(Y%—FY%)—I—d&z,

1
8

Y :%(Y% n Y%) tdi, Y= % (Y% n Y1> +dsa.

3
8
In each formula, d; . is computed as a different NRN multiplied by the current scaling factor JL—

The following step computes Y at ¢ =\ 16> 136,.. ,16 using a scaling factor again reduced by v/2,

and continues as indicated above. The variance S3 of ds. is chosen such that

dsa

[=)
&
N

0.25 0.50 0.75

Fig. 7. The first three stages in the RMD method.
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1 1\ 2 171\
Var[Y, - Y, ]:ZVar[Yl—Yol—l-Sg, (?) 05:1(?> op + 53,

2H
that is, S = (%) (1 —2"7*)a3. The variance S, of d,.. therefore, yields (21,,)2H(l 222 g2,
Step 5. Calculate the values at the midpoints in the previous same manner until the given » is equal to

pNe of Sters Then form the final sequence X, X1, X5, ... by assigning X; < Y, pvoossieps, 1 = 0,1,2,....

A self-similar sequence { Xy, Xi,...,X,} is obtained from the previous steps. Generation of an approxi-
mately self-similar sequence with 1,048,576 numbers took 17 s on a Pentium II (233 MHz, 512 MB). The the-
oretical algorithmic complexity is O(n) [49].

4.4. Successive random addition method

An alternative method for the direct generation of an FBM process is based on the successive random
addition (SRA) algorithm [29,31]. The SRA method uses the midpoints as the RMD method does, but adds
a displacement of a suitable variance to all the points [49]. Adding offsets to all points should make the
resultant sequence self-similar and of normal distribution [49]. The SRA method consists of the following
steps:

Step 1. If the process Y is to be computed for time instances ¢ between 0 and 1, then begin by setting Yy =0
and selecting Y, as a pseudo-random number from a normal distribution with mean 0 and variance
Var[Y] = 3. Then Var[Y; — Y| = 2.

Step 2. Next, Y I is constructed by the interpolation of the midpoint, that is, ¥, = 1Yo+ 1)

Step 3. Add a d1splacement of a suitable variance to all points, ie.,Yy= YO +dig, Yi= =Y+ di2,
Y, =Y, +d, 5. The offsets d, . are governed by a normal random number. For Var[Y n— Y] =

|tz—t1l oé to be true, for any ¢, 5, 0<#1 <t <1, it is required thatVar[Y%—Yol =

2H
LVar¥, — Y] + 252, (1)62 =162 4 282, that is, §2 =1 (;) (1—222)g2,

Step 4. Step 2 and Step 3 are repeated. Therefore, S, =1 (%) (1 = 27262, where 62 is the initial variance
and 0 < H <1.

Step 5. Calculate the values at the midpoints as noted previously until the given n is equal to
Then form the final sequence Xy, X1, X, ... by assigning X; «— Y jovoossieps, 1= 0,1,2,....

2No of Steps.

Using these steps, the SRA method generates an approximately self-similar sequence {Xo, X1,...,X,}. It
took 15 s to generate a sequence of 1,048,576 numbers on a Pentium II (233 MHz, 512 MB). The theoretical
algorithmic complexity is O(n) [49].

4.5. Fractional gaussian noise and daubechies wavelets method

We present a new generator of pseudo-random self-similar sequences based on fractional Gaussian noise
(FGN) and Daubechies wavelets (DW), called the FGN-DW method [26,27]. A pseudo-random generator
of self-similar teletraffic based on Haar wavelet transforms has been proposed in [50,51 and 52]. We used
Daubechies wavelets because the generator based on Daubechies wavelets produces more accurate self-similar
sequences than one based on Haar wavelets. In other words, not only estimates of H obtained from the
Daubechies wavelets are closer to the true values than those from the Haar wavelets, but also variances
obtained from the Daubechies wavelets are lower. The reason behind is that the Daubechies wavelets produce
smoother coeflicients of wavelets that are used in the discrete wavelet transform than the Haar wavelets [53—
55]. Haar wavelets are discontinuous, and they do not have good time—frequency localisation properties, since
their Fourier transforms decay as |)»|*1, for 4 — oo, meaning that the resulting decomposition has a poor scale.
Therefore, Daubechies wavelets produce more accurate coefficients than Haar wavelets; for a more detailed
discussion, see [53,55].
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Our method for generating synthetic self-similar FGN sequences in a time domain is based on a discrete
wavelet transform (DWT). Wavelets can provide compact representations for a class of FGN processes
[56,57,54], because the structure of wavelets naturally matches the self-similar structure of long-range depen-
dent processes [53,55,58].

We claim that the FGN-DW method is sufficiently fast for the practical generation of synthetic self-similar
sequences that can be used as simulation input data. The general strategy behind our method is similar to Pax-
son’s, who used the Fourier transform [20].

Fig. 8 graphically illustrates a discrete Fourier and a discrete wavelet transform. Wavelet analysis trans-
forms a sequence onto a time-scale grid, where the term scale is used instead of frequency, because the mapping
is not directly related to frequency as in the Fourier transform. The wavelet transform delivers good resolution
in both time and scale, as compared to the Fourier transform, which provides only good frequency resolution.
The algorithm consists of the following steps:

Step 1. Given: H. Start for i = 1 and continue until i = n. Calculate a sequence of values {f1,/>,...,f,} using
Eq. (23) (following), where f; = f (% H), corresponding to the spectral density of an FGN process
for frequencies f; ranging between Z and 7. The main difficulty with using Eq. (18) when computing
the spectral density is that it requires to execute the infinite summation. The approximation of f{1,H)
is given in [41] as

;L,H = c, /l 1-2H +O /lmin(372H.2) ’ 23
S

where ¢,is Eq. (19) and O(') represents the residual error.This formula was used in the generation of
self-similar sequences proposed in this paper. Another generator of self-similar sequences based on
FGN was also proposed by Paxson [20], but his method was based on a more complicated approx-
imation of f{4,H) as shown in Eq. (20). Eq. (23) can be used to determine f{4, H) for 4 — oo, or for
n— oo at A =2 For a large value of 4,f(4,H) can be calculated by Eq. (18).

Step 2. Multiply {f;} by realisations of an independent exponential random variable with a mean of one to
obtain { 7 :}, because the spectral density estimated for a given frequency is distributed asymptoti-
cally as an independent exponential random variable with mean f{A, H) [42].

Step 3. Generate a sequence {Y7,Y>,...,Y,} of complex numbers such that |Y,| = f ; and the phase of Y;
is uniformly distributed between 0 and 27. This random phase technique, taken from Schiff [43], pre-
serves the spectral density corresponding to { 7 :}. It also makes the marginal distribution of the final
sequence normal and produces the requirements for FGN.

a b
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Fig. 8. A graphical representation of a discrete Fourier transform and a discrete wavelet transform: (a) a discrete Fourier transform and
(b) a discrete wavelet transform.
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Step 4. Calculate the two synthetic coefficients of orthonormal Daubechies wavelets that are used in the
inverse DWT (IDWT). The output sequence { X7, X>,. .., X} representing approximately self-similar
FGN process (in time domain) is obtained by applying the IDWT operation to the sequence
{Y,Y,,....,Y,}.
v41, L2, s 4n

Using the previous steps, the proposed FGN-DW method generates a fast and sufficiently accurate self-sim-
ilar FGN process { X1, X5, ..., X,}. It took 16 s to generate a sequence of 1,048,576 numbers on a Pentium II
(233 MHz, 512 MB). Its theoretical algorithmic complexity is O(n). Moreover, the accuracy of Daubechies
wavelets is slightly better than Haar wavelets, but there is no difference in the time taken to obtain the same
number of coefficients. For more detailed discussion, see also [31].

5. Comparison of fixed-length generators

Paxson [20] and Lau et al. [28] suggest that the FFT- and RMD-based methods are sufficiently fast in the
generation of simulation input data for practical applications. In this paper, we report on the properties of
these two methods and the F-ARIMA-based method, and compare them with SRA and FGN-DW, two
recently proposed alternative methods for the generation of pseudo-random self-similar sequences [26,30].
These five fixed-length sequence generators are comparable because all of them have the same statistical prop-
erties, such as normal marginal distributions, means and variances. They were implemented in C on a Pentium
IT (233 MHz, 512 MB) computer. The mean times required for generating sequences of a given length were
obtained using the SunOS 5.7 time command and were averaged over 30 replications, each with sequences
of 32,768 (2%, 65,536 (2'%), 131,072 (2'7), 262,144 (2'%), 524,288 (2'°) and 1,048,576 (2°°) numbers.

We have analysed the accuracy with which five considered generators generate normal pseudo-random
sequences with the required value of H. For H= 0.6, 0.7, 0.8 and 0.9, each method was used to generate
30 sample sequences of 32,768 (2'°) numbers starting from different random seeds. Self-similarity and mar-
ginal distributions of the sequences generated were assessed by the same techniques as those used in Section
3.

5.1. Accuracy of generated sequences

A summary of the results of our analysis follows:
The estimates of the Hurst parameter for the wavelet-based H estimator and Whittle’s MLE are shown in
Table 4. All results were averaged over 30 sequences.

(a) The results for the wavelet-based H estimator with the corresponding 95% confidence intervals
H+1. 960A (see Table 4), show that for all input H values, the F-ARIMA, the FFT and the FGN-
DW methods produced sequences with less biased H values than other methods.Using the FFT method,
for H=0.6, 0.7 and 0.8, the values of the Hurst parameter from the sample sequences match the
required values well, but for H = 0.9, the accuracy of the match is lower. Relative error was +0.08%,

Table 4

Mean values of estimated H using the wavelet-based H estimator for the five fixed-length sequence generators for H = 0.6, 0.7, 0.8 and 0.9.
We give 95% confidence intervals for the means in parentheses

Methods Mean values of estimated H and AH

0.6 0.7 0.8 0.9

1z AH(%) H AH(%) H AH(%) H AH(%)

F-ARIMA 5974 (.593, .601)  —0.427  .6990 (.693, .704)  —0.142  .7947 (.787, .801)  —0.663  .8900 (.880, .899) —1.115
FFT .6005 (.596, .604)  +0.083  .6967 (.692, .700) —0.469  .7862 (.782, .790) —1.719  .8639 (.859, .867) —4.012
FGN-DW  .6013 (.574, .629) +0.214  .6987 (.671, .726)  —0.185  .7962 (.769, .824) —0.474  .8938 (.866, .921) —0.694
)
)

RMD .5963 (.591, .601 —0.613  .6907 (.684, .696) —1.332 7805 (.773, .787) —2.443 859 2(.852, .866) —4.536
SRA 5848 (.579, .589)  —2.528  .6797 (.674, .685) —2.899  .7700 (.763, .776)  —3.744 8499 (.842, .856)  —5.568
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—0.47%, —1.75% and —4.11%, respectively.The estimated values of the F-ARIMA method were similar
to the FFT method. For H=0.6, 0.7, 0.8 and 0.9, all values of the Hurst parameter from the sample
sequences were lower than the required values. Relative error was —0.43%, —0.14%, —0.66% and
—1.12%, respectively.The FGN-DW method demonstrated a high level of accuracy and was fast. For
H=0.6,0.7,0.8 and 0.9, the relative error was +0.21%, —0.19%, —0.47% and —0.69%, respectively.The
RMD method generated approximately self-similar sequences [28,30]. For H = 0.6, 0.7, 0.8 and 0.9, the
Hurst parameter tended to be lower than the required value. Relative error was —0.61%, —1.33%,
—2.44% and —4.54%, respectively. The SRA method results were similar to the RMD results. SRA gen-
erated self-similar sequences with the most biased H values. For a more detailed discussion, see [30].

(b) The results for Whittle’s MLE with the corresponding 95% confidence intervals H+1. 960A (see Table 5),
show that for all input H values, the FFT and the FGN-DW methods produced sequences fith less biased
H values than other methods.The FFT method demonstrated a high level of accuracy. For H = 0.6, 0.7,
0.8 and 0.9, the values of the Hurst parameter from the sample sequences match the required values very
well. Relative error was +0.03%, +0.03%, +0.03% and +0.02%, respectively.Using the F-ARIMA
method, for H= 0.6, 0.7, 0.8 and 0.9, all values of the Hurst parameter from the sample sequences were
lower than the required values. Relative error was —3.28%, —5.31%, —6.64% and —7.51%, respec-
tively.The FGN-DW method is more accurate than the F-ARIMA, RMD and SRA methods, but not
the FFT method. For H=0.6, 0.7, 0.8 and 0.9, the relative error was —2.52%, —3.92%, —4.75% and
—5.22%, respectively. The RMD method generated approximately self-similar sequences [28,30]. For
H=0.6,0.7,0.8 and 0.9, the Hurst parameter tended to be lower than the required value. Relative error
was —3.91%, —6.18%, —7.48% and —8.21%, respectively.The SRA method results were similar to the
RMD results. It generated self-similar sequences with the most biased H values. For a more detailed dis-
cussion, see [31].

Our results show that all five generators produced approximately self-similar sequences, with the relative
inaccuracy AH increasing with H, but always remaining below 9%.

5.2. Complexity and speed of generation

The computational complexities of the five fixed-length sequence generators for generating pseudo-random
self-similar sequences of a given length n are shown in Table 6. The number of arithmetic operations per number
required by each of them are also shown in Table 6. The F-ARIMA method was the slowest, requiring
178n% + 3,936 time operations per number. FFT was also slower than the FGN-DW, RMD and SRA methods.

The results of our experimental analysis of the mean times required by each generator are shown in Fig. 9.
Our main conclusions are:

(a) The F-ARIMA method was the slowest of the five methods, as expected.

(b) On average, the FFT method was faster than F-ARIMA, but slower than the other three. This was
caused by the relatively high complexity of the inverse FFT algorithm. FFT requires O(nlogn) compu-
tations to generate n numbers [45] and 49logn + 4175 time operations per number.

Table 5
Mean values of estimated H using Whittle’s MLE for the five fixed-length sequence generators for H = 0.6, 0.7, 0.8 and 0.9. We give 95%
confidence intervals for the means in parentheses

Methods Mean values of estimated H and AH

0.6 0.7 0.8 0.9
H AH(%) H AH(%) H AHY%) H AH(%)
F-ARIMA  .5803 (.571, .590) —3.281  .6628 (.654, .672) —5.308 .7469 (.738,.756) —6.642  .8324 (.823, .842) —7.507
FFT 6002 (.591, .610)  +0.027  .7002 (.691, .710)  +0.033  .8003 (.791, .809)  +0.033  .9002 (.891, .909)  +0.024
FGN-DW  .5849 (.575, .594) —2.521  .6725(.663,.682) —3.924 .762(.753,.771)  —4.745 853 (.844, .862)  —5.223
RMD 5765 (.567, .586) —3.910  .6567 (.647, .666) —6.180 7401 (.731,.749) —7.482 8261 (.817, .835) —8.214

SRA 5762 (567, .586)  —3.965  .6563 (.647, .666) —6.249 7395 (.730, .749) —-7.567  .8252 (.816, .834) —8.311
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Table 6
Computational complexities and arithmetic operations required by each of the five fixed-length sequence generators
Method Complexity Operations per number
F-ARIMA o) 178n% + 3936
FFT O(nlogn) 49logn + 4175
FGN-DW O(n) 4091
RMD O(n) 4103
SRA O(n) 4167
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Fig. 9. Mean running times of the five fixed-length sequence generators. Running times were obtained using the SunOS 5.7 time
command on a Pentium II (233 MHz, 512 MB); each mean is averaged over 30 iterations, each with sequences of 32,768 (215), 65,536 (216),
131,072 (27), 262,144 (2'8), 524,288 (2!°) and 1,048,576 (2*°) numbers.

(c) The FGN-DW, RMD and SRA methods were equally fast. The theoretical complexity of forming a
spectral density, and constructing normally distributed complex numbers, is O(1), while the inverse
DWT is O(n) [20,55]. Thus, the time complexity of FGN-DW is also O(n) and this method requires
4091 operations per number. The theoretical algorithmic complexity of the RMD and SRA methods
is also O(n) [49] and they require 4103 and 4167 operations per number, respectively.

Overall, our results showed that the generator based on FGN-DW is the fastest of the five generators if long
sequences of self-similar pseudo-random numbers are required.

6. Sequential generators versus fixed-length sequence generators

We have presented the results of a comparative analysis of six sequential generators of (long) pseudo-ran-
dom self-similar sequences. All six sequential generators, based on the FBNDP, SFRP, MGIP, PMPP, SRP-
FGN and SAP methods, generated approximately self-similar sequences; SRP-FGN was the most accurate.
However, our results show that for most input H values, the MGIP and SAP-based generators were strongly
biased. The FBNDP method was biased for H = 0.9.

The analysis of mean times required to generate sequences of a given length demonstrates that all six
sequential generators are more attractive than the F-ARIMA-based generator for practical simulation studies
of communication networks because they are much faster. However, these generators require more input
parameters, and selecting appropriate values is a problem that remains.

Furthermore, in the case of SAP, the question of how to define the relationship between the Hurst param-
eter and the two shape parameters (i.e., a; > 0 and o, > 0) of a beta-distribution remains.
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We have also presented the results of a comparative analysis of five fixed-length generators of self-similar
sequences. All five, based on the F-ARIMA, FFT, FGN-DW, RMD andASRA methods, generated approx-
imately self-similar sequences, with the relative inaccuracy of the resultant A below 9% if 0.6 < H < 0.9. How-
ever, the analysis of mean times required to generate sequences of a given length shows that the FFT, FGN-
DW, RMD, and SRA generators are more attractive for practical simulation studies of communication net-
works because they generate sequences much faster. When the wavelet-based H estimator and Whittle’s MLE
(the least biased of the H estimation techniques), are applied (see Chapter 3 in [31]), FFT produces the most
accurate results, with the FGN-DW results almost as accurate. Thus, FFT and FGN-DW are the most prac-
tical in both accuracy and speed for simulation studies with self-similar input.

Table 7 and Fig. 10 show a comparison of the three fastest and most accurate generators of the six sequen-
tial and five fixed-length sequence generators: the SRP-FGN, FFT and FGN-DW generators. While estimated
H values for the FGN-DW method obtained using the wavelet-based H estimator were more accurate than
those for the SRP-FGN and FFT methods, those for the FFT method obtained using Whittle’s MLE were
the most accurate.

Even though the SRP-FGN and FGN-DW methods have the same computational complexity, O(n), the
FGN-DW method was faster than the SRP-FGN and FFT methods, as shown in Fig. 10. Furthermore, while
the SRP-FGN method required three input parameters (i.e., H, M and T), the FFT and FGN-DW methods
required only the Hurst parameter H. Thus, the FFT method was more accurate than the SRP-FGN and
FGN-DW methods, and the FGN-DW method was faster than the other two. Overall, all three methods

Table 7
Comparison of the most efficient SRP-FGN, FFT and FGN-DW methods. Relative inaccuracies of mean values of estimated H obtained
using the wavelet-based H estimator and Whittle’s MLE

Estimator Method AH
0.6 0.7 0.8 0.9
Wavelet-based SRP-FGN —0.968 —0.569 +0.700 +0.344
FFT +0.083 —0.469 -1.719 —4.012
FGN-DW +0.214 —0.185 —0.474 —0.694
Whittle’s MLE SRP-FGN +0.110 +1.905 +2.539 +2.526
FFT +0.027 +0.033 +0.033 +0.024
FGN-DW —-2.521 -3.924 —4.745 —5.223
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Fig. 10. Mean running times of the SRP-FGN, FFT and FGN-DW generators. Running times were obtained using the SunOS 5.7 time
command on a Pentium II (233 MHz, 512 MB); each mean is averaged over 30 iterations, each with sequences of 32,768 (2'%), 65,536 (2'°),
131,072 (217), 262,144 (2'%), 524,288 (2'%) and 1,048,576 (2°°) numbers.
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are more attractive for practical simulation studies of telecommunication networks than the other nine
generators.

7. Conclusions

One of the problems that communication network researchers face when conducting simulation studies is
how to generate long synthetic sequential self-similar sequences. Three aspects must be considered: (i) how
accurately self-similar processes can be generated, (ii) how quickly the methods generate long self-similar
sequences, and (iii) how appropriately self-similar processes can be used in sequential simulations.

Most of the existing synthetic methods for generating self-similar sequences require large amounts of CPU
time. Some current methods must store either part, or all, of the sequence in memory before generating num-
bers of a sequence. In addition, they are often inaccurate or inappropriate in simulation studies of communi-
cation networks. Sequential generators of self-similar sequences depend on the level of approximation, and
need several input parameters to be assumed, while fixed-length sequence generators need only to assume
the Hurst parameter to generate self-similar sequences.

Certainly, more efficient and accurate generators of self-similar sequences of pseudo-random numbers are
needed. A comparative study of self-similar pseudo-random teletraffic generators was undertaken. Overall,
our results, obtained using the wavelet-based H estimator and Whittle’s MLE, which are the least biased of
the H estimation techniques considered in [31], have revealed that the fastest and most accurate generators
of the six sequential and five fixed-length sequence generators considered are the SRP-FGN, FFT and
FGN-DW methods. However, these methods have both strengths and weaknesses. The FFT and FGN-
DW methods are more attractive for non-sequential simulations, because they can generate the required num-
ber of sequences more accurately and quickly than the SRP-FGN method. If the FFT and FGN-DW methods
are used for sequential simulations, sufficient numbers of sequences must be generated before the simulation
begins. However, the required number of sequences is not easy to predict in practical simulations. On the other
hand, the SRP-FGN method is more attractive for sequential simulations, because it does not need to “know”
the required number of sequences beforehand. Unfortunately, this method is less accurate and requires more
generating time than the FFT method.

Network layer traffic generators that can generate packet arrival processes have been addressed in this
paper. In practical simulation studies of communication networks, application level traffic generators are more
approaching to the real network traffic. While these network layer traffic generators are more flexible [31],
those application-layer traffic generators [59-61] are only fit to a specific process. On the other hand, for prac-
tical simulation studies of communication networks, self-similar processes with arbitrary marginal distribu-
tions are needed. In order to obtain these, it is needed to transform a given sequence from the self-similar
processes into a sequence that represents a realisation of a specific process. For example, the FFT and
FGN-DW methods can be used to synthesise VBR video traffic, and the SRP-FGN method can be used to
investigate the queueing behaviour in (steady-state) simulation studies of queueing systems fed by self-similar
input.
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A Glossary of Terms and Acronyms

ACF: autocorrelation function

CDF: cumulative distribution function

CPU: central processing unit

DW: Daubechies wavelets

DWT: discrete wavelet transform

F-ARIMA: fractional autoregressive integrated moving-average
FBM: fractional Brownian motion

FBNDP: fractal-binomial-noise-driven Poisson process

FFT: fast Fourier transform

FGN: fractional Gaussian noise

FGN-DW: fractional Gaussian noise and Daubechies wavelets
FRP: fractal renewal process

FSNDP: fractal-short-noise-driven Poisson process

IDC: index of dispersion for counts
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IDWT: inverse discrete wavelet transform

1ID: independent, identically distributed

LRD: long-range dependence

MB: mega byte

MGIP: M|Gloo processes

ML: mean length

MLE: maximum likelihood estimator

MNPE: mean numbers of Poisson events
MPEG: moving picture experts group

NRN: normal random number

PDF: probability density function

PMPP: Pareto-modulated Poisson processes
RMD: random midpoint displacement

SAP: superposition of autoregressive processes
SFRP: superposition of fractal renewal processes
SRA: successive random addition

SRP-FGN: spatial renewal processes and fractional Gaussian noise
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