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Abstract

Regenerative simulation (RS) is a method of stochastic
steady-state simulation in which output data are col-
lected and analysed within regenerative cycles (RCs).
Since data collected during consecutive RCs are inde-
pendent and identically distributed, there is no problem
with the initial transient period in simulated processes,
which is a perennial issue of concern in all other types
of steady-state simulation. In this paper, we address the
issue of experimental analysis of the quality of sequential
regenerative simulation in the sense of the coverage of the
final confidence intervals of mean values. The ultimate
purpose of this study is to determine the best version
of RS to be implemented in Akaroa2 [1], a fully auto-
mated controller of distributed stochastic simulation in
computer network environments.

Keywords : regenerative simulation, sequential steady-
state simulation, coverage analysis

1 Introduction

Sequential statistical analysis of output data in
stochastic simulation, used for controlling the
length of simulation, is regarded as the only prac-
tical way of securing appropriate level of credibility
of the final simulation results [2]. Following this
approach, simulation is progressing from one check-
point to the next one, until a prespecified accuracy
of all point estimators is obtained. Probably the
most commonly used stopping criterion for sequen-
tial steady-state simulation is the relative precision
of confidence intervals defined as the ratio of the

half-width of the confidence interval (at a given con-
fidence level) and the current estimate of a given
estimated performance measure [3]. An experiment
is stopped at the checkpoint at which the required
relative precision of the final results is reached.

In non-regenerative methods of steady-state
simulation output data analysis, like Spectral Anal-
ysis and Batch Means, one has to discard data col-
lected during the initial transient periods and ob-
serve the process for a subsequent sufficiently long
time period later on, to obtain satisfactorily credible
estimates. Determination of the length of the ini-
tial transient period is often nontrivial and likely
to require sophisticated statistical techniques [3].
Therefore, regenerative method (RM) of analysis of
simulation output data is very attractive alterna-
tive, because it avoids this problem. In regenera-
tive stochastic processes, regenerative cycles (RCs)
produce batches of independent and identically dis-
tributed data, and the final precision of results de-
pends on the number of RCs observed.

Standard sequential stopping rules of sequential
simulation [3], like the relative precision of confi-
dence intervals can be used also in conjunction with
RM. However, RM in sequential steady-state simu-
lation can lead to inaccurate results if the simula-
tion experiment stops too early, when the sequen-
tial stopping criterion is accidently temporarily met.
Some sequential stopping rules for RM were pro-
posed and tested by Sauer [4] and Lavenberg and
Sauer [5]. Following the stopping rule proposed in
[5], the simulation should be stopped when the min-
imum number of RCs is observed (assumed to be
10) and the required precision is reached. In [4], it
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was argued that the simulation run length should
be associated with some minimum simulation time.
As the results of our studies show such approaches
are not longer satisfactory or needed, taking into
account currently available computing resources.

One of the main quality criteria used for assess-
ing the quality of methods of simulation output data
analysis in stochastic simulation is the coverage of
the final confidence intervals it produces, defined as
the proportion of confidence intervals which contain
the true value. Such experimental confidence level
should be confronted with the theoretical confidence
level of the final estimates. Any good method of
analysis of simulation output data should produce
narrow and stable confidence intervals, and the rel-
ative frequency of such an interval containing the
true value of the estimated performance measure
should not differ from the assumed theoretical confi-
dence level. In the past, coverage analyses of various
sequential stopping rules for RM, including those in
[4] and [5], were conducted using fixed numbers of
replications (for example, 50 and 100, as [4] and [5],
respectively).

But, as recently argued in [6], coverage analysis
should be conducted sequentially, to secure statisti-
cally accurate results. The rules of sequential cov-
erage analysis for non-RS (regenerative simulation)
have been proposed in [6]. In this paper, an adapta-
tion of these rules for sequential RS is presented in
Section 3. This is an enhanced version of the cov-
erage analysis, based on F distribution, which, as
shown in [7], leads to more efficient interval estima-
tors of proportions. The numerical results of cover-
age analysis of the sequential RM applied for esti-
mating steady-state means, and reported in Section
4, were obtained in our quest for the most robust
method of sequential analysis of simulation output
data, to be implemented in Akaroa2 [1], a fully au-
tomated controller of distributed stochastic simula-
tion on multiple networked processors, in Multiple
Replications In Parallel (MRIP) scenario [8]. The
results of coverage analysis of two other methods of
sequential estimation of steady-state means, namely
based on Non-overlapping Batch Means and Spec-
tral Analysis (in its version originally proposed by
Heidelberger and Welch [9]) were presented in [6].
The results of coverage analysis of sequential meth-

ods of estimation of steady-state quantiles are re-
ported in [10].

Analysis of coverage is of course limited to an-
alytically tractable systems, since the theoretical
value of the parameter of interest has to be known.
Because of that, it has even been claimed that there
is no justification for experimental coverage analy-
sis, since there is no theoretical basis for extrapolat-
ing results found for simple, analytically tractable
systems to more complex systems, which are sub-
jects of practical simulation studies [11]. On the
other hand, no theory of coverage for finite sample
sizes exists, and in this situation, experimental cov-
erage analysis of analytically tractable systems re-
mains the only method available for testing validity
of methods proposed for simulation output analysis.
Certainly nobody is ready to accept a method of
simulation output data analysis showing very poor
quality in experimental studies of coverage.

2 The Properties of RM

As known, RS is based on the assumption that any
regenerative process starts afresh (probabilistically)
at each consecutive regenerative point. Thus, ob-
servations grouped into batches of random length,
determined by successive regenerative instants of
the simulated process, are statistically independent,
and that includes the first RC, if the simulation
starts from a regenerative state.

For instance, when simulating an M/G/1/∞
queueing system, any instant of time when this sys-
tem reaches the state 0 (no customer present) rep-
resents a regenerative point at the boundary of two
consecutive RCs. After any such instant of time, no
event from the past influences the future evolution
of the system. As a consequence of the independent
and identically distributed output data within con-
secutive RCs, the problems related with the initial
transient period and autocorrelations vanish [12],
[13], [14], [15].

While the accuracy of the final simulation re-
sults from RS depends on the number of simulated
RCs, the rate at which RCs occur depends on the
simulated system. For example, in heavily loaded
but stable queueing systems regenerative states can
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occur very rarely, making the RS very ineffective,
since it becomes difficult, if possible at all, to form
a reliable point estimate and confidence intervals.

As known, RM uses estimators in the form of a
ratio of two variables; see for example [12]. To esti-
mate steady-state mean EX of, for example, wait-
ing times in a queueing system on the basis of ob-
served waiting times x1, x2, x3, . . ., of consecutive
customers, we are given the pairs of (secondary)
output data (a1, y1), (a2, y2), . . . , (an, yn) which are
realisations of i.i.d. random variables Ak and Yk,
1 ≤ k ≤ n, where Ak and Yk denote, respectively,
the number of customers processed and the sum of
the waiting times in kth RC. Let Y (n), a(n), s2

11(n),
s2
22(n), and s2

12(n) be the usual unbiased estima-
tors for E[Y ], E[A], V ar[Y ], V ar[A], and Cov[Y,A]
for any i, respectively; that is Y (n) = 1

n

∑n
i=1 Yi,

a(n) = 1
n

∑n
i=1 ai, s2

11(n) = 1
n−1

∑n
i=1

(
Yi − Y (n)

)2
,

s2
22(n) = 1

n−1

∑n
i=1 (ai − a(n))2, and s2

12(n) =
1

n−1

∑n
i=1

(
Yi − Y (n)

)
(ai − a(n)).

As a consequence of the strong law of large num-
bers [12], the point estimator of the mean

r̂(n) =
Y (n)
a(n)

is strongly consistent estimator of steady-state
mean EX; that is, r̂(n) → EX as n → ∞. More-
over, the estimator for variance

s2(n) = {s2
11(n) − 2r̂(n)s2

12(n) + r̂2(n)s2
22(n)}

is also strongly consistent; that is, s2(n) → V ar(X)
as n → ∞.

A 100(1−α)% confidence interval for the steady-
state mean obtained by applying RM is given by

r̂(n) ± s(n)z1−α/2

a(n)
√

n
,

where z1−α/2 is the (1 − α/2) quantile of the stan-
dard normal distribution [12], [13], [14], [15].

3 Coverage Analysis

for Sequential RS

In sequential RS with a stopping rule based on the
relative precision of confidence intervals, inaccurate

estimates can be obtained if the stopping criterion
is accidently temporarily satisfied, having recorded
an insufficient number of RCs. As a consequence
of this, sensible practise is to ensure that estimates
do not come from simulation experiments with too
few RCs. Recognising the significance of this factor,
we have adjusted stopping rules for sequential RS
by ensuring that minimum of 200 RCs in a single
simulation have to be observed before it is stopped.

This minimum of 200 RCs as the shortest ac-
ceptable length of sequential RS was found exper-
imentally and can be supported by such results as
those reported in Table 1, obtained during RS of
M/M/1/∞ queueing system. One can see that such
very short simulation runs do have very poor cover-
age, below 10%, for the assumed theoretical cover-
age of 95%. The elimination of too short simulation
runs significantly improves the quality of sequen-
tial RM, as documented by the results of coverage
analysis in Figures 1 and 2. These figures show the
results of sequential coverage analysis of M/M/1/∞
queueing system loaded at 0.5, with and without the
restriction on the minimum of 200 recorded RCs as
the length of simulation. The figures also show high
initial instability of coverage. This phenomenon,
similar to that reported in [6], has been the main
motivation behind the proposal of sequential analy-
sis of coverage. It is clear that the coverage analysis
has to be done over sufficiently large sample of data
(in this case: after sequential simulation is repeated
sufficiently many times).

Ideally, the confidence interval of coverage for a
method of simulation output data analysis should
cover the confidence level assumed for the final re-
sults [4]. In practice, this criterion is hardly met
by any method of simulation output data analysis,
so, making this requirement weaker, we accept the
method for practical applications if the confidence
interval of its coverage is sufficiently close to the
confidence level assumed. However, Figures 1 and 2
show that the final coverage was far away from the
required level of 0.95.

As argued in [6], this could be caused by the
fact that an insufficient number of bad final con-
fidence intervals was recorded. (As in [6], a bad
confidence interval means a confidence interval that
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does not cover the theoretical value of the estimated
parameter). Following [6], we assumed that repre-
sentativeness of data for coverage analysis requires
that minimum 200 bad confidence intervals have to
be recorded before sequential analysis of coverage
can commence. Typical convergence of coverage to
its final accurate level, if too short simulation runs
are discarded when minimum number of 200 bad
confidence intervals are recorded, is shown in Fig-
ure 3. Again one can see that the statistical “noise”
introduced by too short simulation runs should be
removed before correct conclusions regarding the
quality of a given method of simulation output anal-
ysis (in this case: the RM) are drawn. As shown
in Figure 3, this resulted in a jump of coverage
from 0.9 to 0.95. Thus, the results of coverage of
RM reported in the next section were obtained se-
quentially, until at least 200 bad confidence inter-
vals have been recorded and having discarded re-
sults coming from RS shorter than 200 RCs.

4 Quality of Sequential RM

In this section we present our results of coverage
analysis of sequential RM. As discussed in the pre-
vious section, these results were obtained applying
the sequential analysis of coverage. These results
will be additionally confronted with the results ob-
tained following previously used method of coverage
analysis, based on the fixed-sample size approach.

All results for sequential RM were obtained as-
suming the required precision of the final result 5%
or less, at the confidence level of 0.95. The same
stopping criterion applied in our sequential cover-
age analysis. Additionally, only simulation runs of
minimum 200 RCs were taken into account, and the
interval estimator of coverage was based on F dis-
tribution to ensure that the sequential analysis of
coverage does not last excessively long [7].

The results of coverage reported in this sec-
tion were obtained on the basis of simulation of
M/M/1/∞ queueing systems. The results of cov-
erage of the sequential RM obtained from non-
sequential analysis are presented in Figure 4, while
Figure 5 show the same results obtained sequen-
tially. One can clearly see that the sequential cov-

erage analysis, with filtering off too short simulation
runs and requiring recording of at least 200 bad con-
fidence intervals, produces better (more reliable, as
we have argued) results.

Generally, our results show that the sequential
RM used for analysis of steady-state means can
be considered as a good candidate for being im-
plemented in such simulation packages as Akaroa2,
where whole process of simulation output data is
conducted automatically during simulation. Before
the final recommendation is done, one should con-
duct full study of coverage of this method of simula-
tion output analysis by including wider spectrum of
its applications, over a range of standard stochastic
systems and processes.

5 Conclusions

In this paper we formulate the rules of sequential
coverage analysis for methods of output analysis
used in RS. These rules have been applied in cover-
age analysis of the sequential RM used for estima-
tion of steady-state means. Sequential run length
control of stochastic simulation is the only efficient
way for securing precision of the final simulation re-
sults.

Our initial results, obtained when using
M/M/1/∞ queueing systems used as the reference
model, indicate the RM in its sequential version
is an attractive solution for practitioners if special
care is taken for avoiding too short simulation runs.
Our coverage analysis of this RM is continued by
studying its applications over a broader spectrum
of simulation reference models. On the other hand,
additional problems have to be solved before this
method can be offered in fully automated simula-
tion tools as Akaroa2. These include rules for de-
termination of (approximate) regenerative points.
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Figure 1: Convergence of coverage analysis for sequential RM with
no restriction on the minimum run length (M/M/1/∞, load = 0.5).
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Figure 2: Convergence of coverage analysis for sequential RM with
the minimum length of 200 RCs before stopping (M/M/1/∞, load =
0.5).
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Figure 3: Convergence of coverage analysis for sequential RM with
the minimum length of 200 RCs, and 200 bad confidence intervals
(M/M/1/∞, load = 0.5).
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Table 1: The number of too short simulation
runs (less than 200 RCs) in 3000 simulation
replications and their coverage (M/M/1/∞,
theoretical confidence level = 0.95).
Load Number of too short runs Coverage
0.1 158 6.3%
0.2 167 5.4%
0.3 159 4.4%
0.4 156 5.8%
0.5 166 3.6%
0.6 159 3.1%
0.7 191 4.7%
0.8 281 3.6%
0.9 450 6.0%
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Figure 4: Non-sequential coverage analysis of sequential RM (200 repli-
cations; M/M/1/∞).
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Figure 5: Sequential coverage analysis of sequential RM without and
with the restriction on the minimum run length and the number of bad
confidence intervals (M/M/1/∞).
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