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Abstract

Stochastic discrete-event simulation has become one of the most widely
used tools for performance evaluation of complex stochastic dynamic systems
in many areas of science and engineering. We address the problem of the
statistical correctness of final simulation results in the context of sequential
steady-state simulation, conducted for studying long run behaviour of sta-
ble dynamic systems. Due to various approximations, the final confidence
intervals can cover estimated theoretical values at much below the frequency
suggested by the assumed confidence levels. On the basis of exhaustive experi-
mental analysis, we formulate basic rules for the proper experimental analysis
of the coverage of sequential steady-state interval estimators. The numeri-
cal results of our coverage analysis for the method of non-overlapping batch
means, spectral analysis and the regenerative method are presented.

1 Introduction

Stochastic discrete-event simulation has become one of the most widely used tools
for performance evaluation of complex stochastic dynamic systems in many areas of
science and engineering. One problem faced by simulators is to obtain credible final
results. Attempts at solving this problem in the case of steady-state simulation,
when simulation output data are typically strongly correlated, have led to different
interval estimators, used in different methods of simulation output data analysis.
In this paper, we address the problem of the statistical correctness of the final
simulation results in the context of sequential steady-state simulation, conducted for
studying long run mean values of performance measures of stable dynamic systems.

Sequential statistical analysis of output data in stochastic simulation, used for
controlling the length of simulation, is regarded as the only practical way of securing
an appropriate level of credibility of the final simulation results (Law and Kelton [9],
and Pawlikowski [13]). In this approach, simulation progresses from one checkpoint
to the next one, until prespecified accuracies of the point estimators of interest



are obtained. Probably the most commonly used stopping criterion for sequential
steady-state simulation is the relative precision of results, defined as the ratio of
the current half-width of the confidence interval (at a given confidence level) to the
current point estimate of a given estimated performance measure (Pawlikowski [12]).
An experiment is stopped at the checkpoint at which the required relative precision
of the final results is reached.

One of the main quality criteria used for assessing methods of simulation output
data analysis in stochastic simulation is the coverage of the final confidence intervals
they produce, defined as the proportion of confidence intervals which contain the
true value of an estimated performance measure. Any good method of analysis of
simulation output data should produce narrow and stable confidence intervals, and
the relative frequency with which such intervals contain the true value of the esti-
mated performance measure should not differ too much from the assumed theoretical
confidence level.

As recently argued in Pawlikowski et al. [14], coverage analysis should be also
conducted sequentially, to secure statistically accurate results. The rules of sequen-
tial coverage analysis have been proposed in Pawlikowski et al. [14]. In this paper,
a revision of those rules is presented. This is an enhanced version of sequential
coverage analysis, based on the F distribution, which leads to more efficient interval
estimators of proportions, see Lee et al. [10]. In this paper coverage analysis is also
studied experimentally, in the context of sequential steady-state simulation, assum-
ing three different methods of mean value analysis: non-overlapping Batch Means
(BM), Spectral Analysis (SA) in its version proposed by Heidelberger and Welch [7],
and regenerative method (RM) (Crane and Iglehart [1], Crane and Lemoine [2], and
Shedler [17]). The theoretical bases of these three methods of simulation output
data analysis, and sequential implementations of two first methods, are given for
example in Pawlikowski [12]. Sequential implementation of RM is described in Lee
[8].

In steady-state simulation output data analysis, such as SA and BM, one has
to discard data collected during the initial transient period. Determination of the
length of the initial transient period is often nontrivial and likely to require so-
phisticated statistical techniques (Pawlikowski [12]). RM, also known as regenera-
tive simulation, avoids this problem. During the regenerative simulation, simulated
processes are regarded as regenerative stochastic processes. Following RM, one
groups data collected during different regenerative cycles (RCs) in batches (of inde-
pendent and identically distributed data), and the final precision of results depends
on the number of RCs recorded.

Numerical results of coverage analysis of the three sequential methods applied
for estimating steady-state means were obtained in our quest for the most robust
method of sequential analysis of simulation output data, to be implemented in
Akaroa2 (Ewing et al. [4]), a fully automated controller of distributed stochas-
tic simulation on multiple networked processors, in the Multiple Replications In
Parallel (MRIP) scenario (Pawlikowski et al. [15]). The results of coverage analysis
of sequential methods of estimation of steady-state quantiles were reported in Lee
et al. [11].



Rules of experimental coverage analysis are formulated in Section 2, and the
numerical results are presented in Section 3.

2 Experimental Analysis of Coverage

Following the most basic principles of scientific experimentation, the final results
from performance evaluation studies of stochastic dynamic systems by means of
discrete-event simulation should be always determined together with their statisti-
cal errors. These errors are usually measured by the half-width of the final confi-
dence intervals. But the methods proposed for estimating the confidence intervals
of different performance measures (such as mean values, variances, probabilities,
quantiles etc.) are based on different simplifying assumptions, which can cause the
experimental confidence level (or coverage) of the final confidence intervals to differ
significantly from the assumed (theoretical) confidence level. The aim of experi-
mental coverage analysis is to find the best method(s) (in the sense of coverage) for
sequential analysis of simulation output data.

As justified in Pawlikowski et al. [14], only sequential coverage analysis can lead
to credible final conclusions regarding the quality of any method of simulation output
analysis. Experimental results presented there clearly show high initial instability
of coverage. To avoid this region, coverage analysis has to be done over a sufficiently
large sample of data (in this case: after sequential simulation is repeated sufficiently
many times).

Following this approach, one needs to estimate the proportion of confidence
intervals covering the theoretical value of interest. This of course means that exper-
imental coverage analysis is restricted to analytically tractable systems.

Let us consider independently repeated simulation experiment, and let p be the
probability that a final confidence interval (obtained from a replication) covers the
theoretical value. Then, this probability p can be estimated by a proportion p̂

p̂ =
count of successes in sample

size of sample
=

s

n
,

where a “success” means that a confidence interval covers the theoretical value, and
n is the number of replications executed.

The accuracy with which p̂ estimates p can be assessed by the probability

P (p̂ − ∆1 ≤ p ≤ p̂ + ∆2) = 1 − α

where ∆1 and ∆2 are the offset for the lower and the upper limit of the confi-
dence interval of p, and (1 − α) is the confidence level, 0 < α < 1. Note that, if
the simulation results are obtained at an assumed confidence level of (1 − α0) and
the simulation experiment were repeated many times, the final confidence intervals
would be expected to contain the exact theoretical value in p = 100(1 − α0)% of
cases. Unfortunately, methods used for determining confidence intervals are based
on various approximations, which can lower the coverage (experimental confidence
level) of the method much below the assumed confidence level. As mentioned, the
robustness of methods of sequential estimation is usually discussed in the context of



coverage. Sauer [16] proposed that the method used for determining the confidence
interval of the point estimate at a given confidence level (1 − α0) is considered as
valid, if the upper limit of the confidence interval of p equals at least (1 − α0).

As discussed in Lee et al. [10], the interval estimator of coverage should be based
on the F distribution, to ensure that the sequential analysis of coverage produces
realistic estimates. A 100(1 − α)% lower limit of the confidence interval for the
proportion p is

p̂l = p̂ − ∆1 =
np̂

np̂ + (n − np̂ + 1)f1−α/2(r1, r2)

and a 100(1 − α)% upper limit of the confidence interval for the proportion p is

p̂u = p̂ + ∆2 =
(np̂ + 1)f1−α/2(r3, r4)

(n − np̂) + (np̂ + 1)f1−α/2(r3, r4)

where f1−α/2(r1, r2) and f1−α/2(r3, r4) are the (1−α/2) quantile of the F distribution
with (r1, r2) and (r3, r4) degrees of freedom, where r1 = 2 ∗ (n−np̂+1), r2 = 2 ∗np̂,
r3 = 2 ∗ (np̂ + 1), and r4 = 2 ∗ (n − np̂) (Hald [6]).

Any sequential simulation experiments may stop after too few simulation runs
have been collected, if, by chance, the stopping criteria has been temporarily satis-
fied. As shown in Pawlikowski et al. [14], this happens in real simulation experiments
from time to time and can make estimates of coverage unreliable.

On the basis of exhaustive experimental analysis, results of which are presented
in Section 3, we reformulate basic rules for the proper experimental analysis of the
coverage of sequential steady-state interval estimators as follows:

• Rule 1 : Coverage should be analysed sequentially, i.e. analysis of cover-
age should be stopped when the absolute precision of the estimated coverage
satisfies a specified level which is sufficiently small.

• Rule 2 : An estimate of coverage has to be calculated from a representative
sample of data, so the coverage analysis can start only after a minimum number
of ‘bad’ confidence intervals have been recorded.

• Rule 3 : Results from simulation runs that are clearly too short should not
be taken into account.

• Rule 4 : An interval estimator which is based on the F distribution of
coverage should be used to ensure that the sequential analysis of coverage
produces realistic estimates.

Details of our experimental results of these revised rules of sequential coverage
analysis for studying quality of the final steady-sate interval estimators of mean
values are discussed in Section 3.
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Figure 1: Sequential coverage analysis for sequential BM using F distribution
(M/M/1/∞)

3 Numerical Results

We consider three sequential methods of steady-state analysis of means: the method
of non-overlapping BM, SA in its version proposed by Heidelberger and Welch [7],
and RM (Crane and Iglehart [1], Crane and Lemoine [2], and Shedler [17]). Our
implementations of the first two methods follow exactly the procedures specified in
Pawlikowski [12] and the last method is in Lee [8].

All results of our sequential coverage analysis were obtained assuming the re-
quired precision of the final result was 1% or better, at a confidence level of 0.95
using an M/M/1/∞ queueing system as a reference simulation model. Additionally,
the interval estimator of coverage was based on the F distribution to ensure that the
sequential analysis of coverage produces more realistic estimates (Lee et al. [10]).

As justified in Pawlikowski et al. [14], one can clearly see that the sequential
coverage analysis, with filtering of too short simulation runs and with a requirement
of a minimum of bad confidence intervals, produces more reliable results. Therefore,
in a practical implementation of Rules 1 - 3, we assume that representativeness of
data for coverage analysis requires that a minimum of 200 bad confidence intervals
have to be recorded before sequential analysis of coverage can commence and then
the results from all simulation runs shorter than a threshold (one standard devi-
ation below the mean of the run lengths) are discarded. Removing the statistical
‘noise’ introduced by too short and unrepresentative simulation runs improves the
conclusions we can make about the quality of a given method of simulation output
analysis.

The results of our sequential coverage analysis of the method of BM, RM, and
SA are presented in Figures 1, 2, and 3. These numerical results are very similar
to the results reported in Pawlikowski et al. [14]. The difference is that the final
half-width of the confidence intervals at different traffic levels are the same. (Note
that the figures are drawn to different scales.)

Ideally, the confidence interval of coverage for a method of simulation output data
analysis should contain the confidence level assumed for the final results (Sauer [16]).
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Figure 2: Sequential coverage analysis for sequential RM using F distribution
(M/M/1/∞)
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Figure 3: Sequential coverage analysis for sequential SA using F distribution
(M/M/1/∞)

In practice, this criterion is hardly met by any method, so, making this requirement
weaker, we accept the method for practical applications if the confidence interval of
its coverage is sufficiently close to the confidence level assumed.

The final coverage of three sequential methods is still far from the required level,
especially in highly correlated systems. These could be caused by the fact that an
insufficient number of observations is collected in each simulation run, as shown in
Figure 4. This is clear from the comparison of the theoretical and experimental
run lengths of sequential simulation, under BM, RM, and SA, obtained from 10,000
independent replications of steady-state simulations of the M/M/1/∞, M/D/1/∞,
and M/H2/1/∞ queueing systems, estimating the mean response time, with at
least 0.1 as the upper level of the acceptable relative error of the final results, at
a confidence level of 0.95. Figures 4 - 6 show the average numbers of observations
collected in experiments and these required theoretically (see Daley [3] and Fishman
[5]).
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Figure 4: Mean run length of 10,000 independent simulation runs of estimating
mean response time at M/M/1/∞ queueing system
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Figure 5: Mean run length of 10,000 independent simulation runs of estimating
mean response time at M/D/1/∞ queueing system

When we compare the numbers of observations needed theoretically with those
used in experiments, they are nearly the same at the light traffic intensities, except
the sequential BM. This is because the finally accepted batch size in sequential
BM is unnecessarily large. As a consequence, all three methods produce acceptable
coverage at light traffic intensities. For heavier traffic intensities, all three methods
collect smaller numbers of observations than theoretically required.

4 Conclusions

In this paper, we address the problem of the statistical correctness of the final sim-
ulation results in the context of sequential steady-state simulation, conducted for
studying long run behaviour of stable dynamic systems. Such simulations are of-
ten stopped when the relative half-width of confidence intervals of point estimates
becomes sufficiently small. The problem is that, due to various approximations,
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Figure 6: Mean run length of 10,000 independent simulation runs of estimating
mean response time at M/H2/1/∞ queueing system

the final confidence intervals can cover estimated theoretical values at much lower
frequency than that suggested by the assumed confidence level. On the basis of
exhaustive experimental analysis, we reformulate basic rules for the proper experi-
mental analysis of the coverage of sequential steady-state interval estimators. The
numerical results of our coverage analysis for the method of non-overlapping batch
means, spectral analysis and regenerative method are presented. We also compare
the theoretical and empirical run lengths of sequential steady-state simulation, to
indicate the cause of poor coverage of results from simulations of highly correlated
processes.
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