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KEYWORDS the length of such a simulation experiment was set as an input
to simulation programs. In suchfxed-sample-size scenario
Sequential stochastic simulation, steady-state simulation, simthe final statistical error of the results is a matter of luck. This
ulation output data analysis, statistical error of results. is no longer an acceptable approach. Modern methodology of
steady-state simulation offers an attractive alternative, known
as thesequential scenariof simulation or, simplysequen-
ABSTRACT tial simulation Today, this scenario is recognised as the only

) ) o . practical approach allowing control of the statistical error of
It is generally accepted that sequential stochastic simulatiogne final simulation results, since. no procedure in which

is the only practical approach allowing control of the statisti- the run length is fixed before the simulation begins can be re-
cal error of the results of steady-state stochastic simulation. Ajeq upon to produce a confidence interval that covers the true
commonly used stopping rule of such stochastic simulation isheoretical value with the desired probability ..[Law and
based on the relative statistical error, since then the magnitudge|ton 1991). The error control available through sequential
of the point estimates does not need to be known beforehand;myation also makes a further step towards automating the

This relative statistic_al error of the _simulation resu_lts can _besimulation process, for use by people who are not experts in
measured by the ratio of the half-width of the confidence in-gjmulation methodology.

terval and the point estimate of an analysed performance mea- Statistical errors associated with the final results of se-

sure. Sequeptial simulation is stopped when this ratio assume(fljential stochastic simulation are commonly measured by the
a Si;ISfaC]EOEW Iowb\I/aIue. fh il 0 is that th relative statistical error defined as the ratio of the half-width
ne of the problems of the sequential scenario Is that theyt 1o ¢onfidence interval (CI) and the point estimate of an

inherentl_y re_mdom_ nature of the output_data generated by an_}énalysed performance measure. The simulation follows a se-
stoc_hastlc S|mulat|c_)n can cause an a_cmdental, temporary Sat'ff]'uence of checkpoints at which the relative statistical error of
faction of the stopping rule, resulting in acceptance of aWroNGine cyrrent estimates is assessed. For example, in the case of
point estimate as the final simulation results. In this paper we . 1ation during which a mean valyeis estimated, when
consider two rules of thumb which could be used for improv-,, o seryations (or output data) are available at a given check-

ing the quality of the fmql re_sults n practical apphca_tlons of point and the estimate pfequalsX (n), the relative statistical
fully automated sequential simulation, and study their perfor- . A(n) .
. . . error of the mean is measured&y.) = ==, whereA(n) is
mance in three methods of sequential output data analysis. ) X(n) )
the current half-width of the CI far at the(1 — «) confidence

level; 0 < a < 1. If €(n) < €maz, Wheree,, ., is the worst
1 INTRODUCTION acceptable relative statistical error of the final results at the
(1 — «) confidence level) < e,,,4, < 1, then the simulation
Any stochastic discrete-event simulation should be regardegan be stopped. Otherwise, the simulation is continued, and
as a (simulated) statistical experiment. Hence, statisticathe relative statistical error of results is analysed again when
analysis of simulation output is mandatory. Otherwise, the next checkpoint is reached. The advantage of using such
computer runs yield a mass of data but this mass may turrfelative measure of statistical errors is that simulators do not
into a mess<if the random nature of such output data is ig- need to know the magnitude of the point estimates of perfor-
nored, and then ... instead of an expensive simulation model, mance measures they analyse.
a toss of the coin had better be usg&leijnen 1979). The problem is that the inherently random nature of output
There are two different scenarios for determining the run-data generated during any stochastic simulation can cause an
length of a steady-state stochastic simulation. Traditionallyaccidental, temporary satisfaction of the stopping rule, result-




ing in acceptance of a wrong point estimate as the final result. A closer look at the results associated with such ‘too short’
This problem, and rules of thumb which can protect againstsimulation runs has revealed that the coverage of simulation
the degradation of the covera§ef the final results in prac- results obtained during such ‘too short’ simulation runs can
tical applications of fully automated sequential simulations, be very poor indeed; see the third column in Table 1. Each of
are discussed in Section 2. The performances of two heuristhe results reported there was obtained on the basis of 3,000
tic rules assessed in different simulation output data analysi;ndependent replications of the steady-state simulation of the
methods are presented in Section 3. M/M/1/00 queueing system. The second and fourth col-
umn gives, respectively, the absolute and the relative number
of ‘too short’ simulation runs in the total number of simula-
2 PROBLEM AND PROPOSED tions executed at each load level of this queueing system. The
next columns of this table report the minimum acceptable run-
SOLUTION length of simulation (column five), and the mean simulation
run-length, each over 3,000 replications (column six).
Table 1 clearly shows that the results obtained from
o short’ simulation runs, when simulation output data are

As mentioned, the problem faced in practical applications of
sequential steady-state simulations is that an assumed stoq(—)

ping cnteng n, for.(;axatrlnple,t. bf‘.asc?? on thle re!a_t|ve Stat'.sucalanalysed by means of the SA/HW, can be very wrong. One
error, can be accidently satistied foo early, giving Very inac-., , see, too, that the problem becomes more critical in the

curate estimates of thg ana]ysed par'ameters. T.h's happgraase of higher loaded queueing systems, or, equivalently, in
due to random fluctuations in the estimated relative statisti-,

i . ) the case of processes with stronger autocorrelations.
cal error; see, for example, (Pawlikowski and de Vere 1993). The question is how, in practical applications of sequential

At least a dozen methods have been proposed for analysin . . . :
) . . mulation, one could try to avoid using the results obtained by
the CI of autocorrelated time-series of observations collecte - : .
too short’ simulation runs. Therefore, we propose a simple

for studying the steady-state performance of various stochas- . A
. : : rule of thumb which could help to eliminate acceptance of
tic dynamic systems. A survey of methods used until 1990results from ‘too short' simulation runs. Namely:
can be found in (Pawlikowski 1990). Newer methods have ' '
appeared in (Charnes and Chen 1994; Fox et al. 1991; Golds-
man and Kang 1991; Howard et al. 1992). Rule 1

One of these methods, known as SA/HW (the method
of spectral analysis as proposed in (Heidelberger and Welch
1981)), has been considered to be a good candidate for fully
automated implementations of steady-state simulation, both
in the case of a traditional simulation executed by a single
computer (Pawlikowski 1990) and in the case of a distrib-
uted stochastic simulation executed on multiple computers of
a LAN; see, for example, (Ewing et al. 1999). As with any
other method of sequential analysis of simulation output data

SA/HW incorporates various approximations. Thus, 10 findj, . o hslied Rule 1, one would still have the final results com-

the best tuning, one has to know its properties. ing from a ‘too short’ simulation. Namely, if one executes R

The theoretical studies of the properties of the Cl genery,qenendent simulation replicatior,> 1, then the resulting

ated by a given method of simulation output data analysis camrohability of a wrong decision will b&R . With Pypor; be-

reveal general conditions which have to be satisfied to SECUrq the probability that a simulation run is ‘too shorP”?

. . short
the correct coverage, but correctness of any practical implejs the probability of allR replications belonging to the class of

mentation of a specific methoq also has to be tested experi;gq snort’ simulations. Generally speakinB,,,.: is hardly
mentally. The results of analysis of coverage of SA/HW haveypainaple in simulation practices of real applications. But,
been reported in (Pawlikowski et al. 1998), together with theg,, example, in the case of the//M/1/0c queueing sys-
rules forsequential coverage analysighese preliminary re- 1o our experimental results allow us to assume that a ‘t00

sults of the coverage analysis under the SA/HW have showiy, o simulation run in sequential steady-state simulations,

that a satisfactory level of coverage of the final results pro-i, output data analysed by the SA/HW, can occur with the
duced by the SA/HW can be obtained if one ensures that thﬁrobability Poyore = 0.167 OF less: see T1able 1. column 4

results produced by ‘too short’ simulation runs are discardedg, p = 0.4. Thus, one can claim that the probability of us-

In (Pawlikowski et al.1998), a simulation run was regardeding the final results originating from a still ‘too short’ simu-

as being ‘too short’ if the sequence of simulation output dataztion when applying this rule of thumb witk = 3, is not
it generated was shorter than the mean simulation r“”'lengtrérger,thar{).m??' = 0.005. It drops t00.167° = 0.’00013
minus one standard deviation of the simulation run-length. ’

e executeR independent replications of a given sequential
simulation and record their run-lengths (measured by the
size of the sample of simulation output data)

e accept the results produced by the longest simulation run
only.

Using the results presented in Table 1, one can assess the
probability of a wrong decision, i.e. the probability that hav-

or less, if one repeats the sequential simulafiba: 5 times.

LIn this paper, the coverage is defined as the experimental frequency withNOte that these results are similar to the one reported in (Lee

which the final confidence intervals contain the true (estimated) value. In the€t _al- 1999a), in the context of_se_quential reggnerative simu-
ideal situation, it should be equal to the assumed confidence level. lations. One can expect that similar results will characterize




Table 1: Run-length statistics from 3,000 independent simulation replications: SA/HW, Mtyi/1/
theoretical confidence level = 0.95

| Load | Number of short rung Coverage| Probability(short) | Threshold| Mean of lengthg

0.1 0 N/A 0.0% 1341 1723
0.2 0 N/A 0.0% 1377 2002
0.3 133 83.5% 4.4% 1538 2475
0.4 500 80.2% 16.7% 1813 3278
0.5 297 69.7% 9.9% 2383 4670
0.6 364 63.7% 12.1% 3415 7247
0.7 307 53.1% 10.2% 5214 12727
0.8 236 46.2% 7.% 9743 27906
0.9 263 38.0% 8.8% 33461 107049

simulation of any stochastic process with correlations similarcoverage has been so far analysed sequentially, i.e. it char-
to those ofM /M /1/00 queueing system. acterises various versions of the method of batch means, the
Although in any stochastic simulation, the relative width method of spectral analysis in its SA/HW version, and the
of the generated Cl randomly changes with the number of colregenerative simulation; see, for example, (Lee et al. 1999;
lected observations, it has a general trend of shrinking. ThusMota et al. 1999; Pawlikowski et al. 1998).
if information about the number of collected simulation out- In the next section, we will use the results of our ex-
put data is not available, one could try to order the lengthshaustive studies of coverage produced by SA/HW, the non-
of simulation runs on the basis of the final relative statisticaloverlapping batch means (NOBM), and the regenerative
error of replicated simulation experiments. This gives us themethod (RM), for studying the effects of Rules 1 and 2 on
following, alternative rule of thumb: the quality of the final results from the sequential steady-state
simulation.

Rule 2
e executeR independent replications of a given sequential 3 NUMERICAL RESULTS

simulation and record the final relative statistical error of

results . . . I
Since an experimental investigation of the consequences of

e accept the results produced with the smallest relative stat00 short’ simulation runs requires that the exact values of
tistical error only, i.e., take the apparently most accurateanalysed parameters are known, here, as an example, we have
result out ofR results obtained. selected theM/M/1/o0 queueing system as the reference

simulation model of our studies. This queueing system is no-

Note that both rules suggest discarding R - 1 replicationdorious for strong autocorrelations of data in output sequences
of R replications executed. This is certainly a significant di- and long simulation runs required for achieving satisfactorily
version from the main concept of an automated sequentialow level of statistical errors, and, because of this, it is com-
simulation that each such a simulation is run only once, evennonly used as the reference simulation model in research on
without a pilot run (Heidelberger and Welch 1983). On the methods of simulation output data analysis (Schriber and An-
other hand, such a rule, although in a different context, waglrews 1981). All the numerical results in this section were
proposed by D. Knuth in 1969, when he wrote that the obtained from sequential steady-state simulation runs of the
most prudent policy for a person to follow is to run each M/M/1/co queueing system, estimating the mean response
Monte Carlo program at least twice, using quite different time, with €,,,4, - 100% = 10% as the upper level of the ac-
sources of pseudo-random numbers, before taking the answergeptable relative statistical error of the final results, at a con-
of the program seriously{Knuth 1969). fidence level of 0.95. In analysed cases each reported results

Of course, no rules of thumb can ensure that the final Ciwas obtained from 2,000 independent simulation replications.
from a stochastic simulation will contain the theoretical value For example, in the case &= 5, we studied results of 10,000
with a probability equal to the assumed confidence level. Onegeplications.
of the ongoing research problems in the area of a sequen- The results presented in Figure 1 clearly show that Rule
tial steady-state simulation is to find a method of simulationl (taking into account only the longest Bfexecuted replica-
output data analysis which would be valid (in the sense oftions; R =2, 3 and 5) is a viable policy, and the larders, the
coverage) when one also applies it in a simulation of highlybetter the quality of the final results in terms of coverage. On
dynamic stochastic processes. This problem has been identihe other hand, at least in the cases considered here, there is
fied for all methods of simulation output data analysis whoseno need to assume is larger than 3, since already f&r= 3



the resulted coverage reaches its ideal level. As the statisticatwing, G.; K. Pawlikowski; and D. McNickle. 1999. “Akaroa-2:
data of Table 1 show, the probability that the replication is still  Exploiting Network Computing by Distributed Stochastic Simu-
in the class of ‘too short’ simulation runs, after discardingtwo lation.” 13th European Simulation MulticonfWarsaw, Poland,
shorter replications out of three replications executed, drops June 1999): 175-181.
to 0.005. Fox, B. L.; D. Goldsman; and J. Swain. 1991. “Spaced Batch
The same simulation results, but screened by applying Means.”Operations Research Letters0: 255-263.
Rule 2, are depicted in Figure 2. One can see that discardinGoldsman, D. and K. Kang. 1991. “ Cramer-von Mises Variance
results with larger (but acceptable) levels of relative statisti- Estimators for SimulationsProc. 1991 Winter Simulation Conf.
cal errorworsensthe coverage of the final results, regardless ~ (Phoenix, Arizona, 1991): 916-920.
the number of replications executed. Similar results one carteidelberger, D. and P. A. Welch. 1981. “A Spectral Method for
obtained for both the NOBM and the RM. This suggests that, Confidence Interval Generation and Run Length Control in Simu-
due to the randomness of the simulation output data, a simula- 1ations.” Comms. of the ACM5: 175-181.
tion stopped with a higher (but acceptable) relative statisticaHeidelberger, D. and P. A. Welch. 1983. “Simulation Run Length
error is not necessarily a shorter one. Typically, in long sim- Control in the Presence of an Initial TransienOperations Re-
ulation runs the convergence of the relative statistical error to Search 31: 1109-1144.
its threshold value is slow but persistent. It is quite likely that Howard, R. B.; M. A. Gallagher; K. W. Bauer; and P. S. Maybeck.
a sudden and significant drop of the relative statistical error 1992. “Vector-autoregressive Inference for Equally Spaced Time-
during a sequential simulation, temporarily causing satisfac- Averaged Multiple Queue Length Processedc. 1992 Winter
tion of the simulation stopping rule, can be associated with a Simulation Conf.586-593.
‘too short’ simulation run. Thus, Rule 2 should not be appliedKleijnen, J. P. C. 1979. “The Role of Statistical Methodology in Sim-
in simulation practise since it may lead to the acceptance of Ulation.” In Methodology in Systems Modelling and Simulation
the results from a ‘too short’ simulation run, instead of their ~B-P-Zeigler etal. (eds), North-Holland, Amsterdam.
discarding. Knuth, D. E. 1969 Art of Programming \ol. 2. Addison-Wesley.
The results of experimental studies of Rule 1 with differentLaw, A. M. and W. D. Kelton. 1991.Simulation Modelling and
simulation output data analysis methods: the NOBM and the Analysis.McGraw-Hill.
RM are depicted in Figures 3 and 4. The three methods ofee, J. R.; D. McNickle; and K. Pawlikowski. 1999. “Quality of
output data analysis appear to produce similar results. Sequential Regenerative Simulatiori3th European Simulation
Multiconf,, (Warsaw, Poland, June 1999): 161-167.
Lee, J. R.; K. Pawlikowski; and D. McNickle. 1999a. “Do Not
4 CONCLUSIONS Trust Too Short Sequential Simulatiort999 Summer Computer
Simulation Conf.(Chicago, lllinois, July 1999): 97-102.
This paper addresses the problem of an automated sequegta, E.: A. Wolisz; and K. Pawlikowski. 1999. “Sequential Batch
tial stochastic simulation, caused by the sequential simulation Means Techniques for Mean Value Analysis in Distributed Sim-
being stopped too early, before a sufficiently long sample of ulation.” 13th European Simulation Multicon{Warsaw, Poland,
output data has been collected. Having discussed the problem, June 1999): 129-134.
its genesis and significance, we propose and study two rulepawlikowski, K. 1990. “Steady-State Simulation of Queueing
of thumb that, if applied in simulation practise, can dimin-  Processes: A Survey of Problems and SolutioA&M Comput-
ish the probability of having the results coming from such a ing Surveys2: 123-170.
prematurely finished simulation to a negligible level. Our ex- pawlikowski, K. and L. de Vere. 1993. “Speeding up Sequen-
perimental studies show that Rule 1 is a viable heuristic rule, tial Simulation by Relative Variance Reduction.” Rroc. 8th
which can be supported by the results of coverage analysis for Australian Teletraffic Research Seminar, ATRSRBIIT, Telstra,
the three methods of output data analysis in sequential steady- 203-212.
state simulation. Pawlikowski, K.; V. Yau; and D. McNickle. 1994. *“Distributed
This rule of thumb can be easily implemented in simula- Stochastic Discrete-Event Simulation in Parallel Time Streams.”
tion packages offering an automated control of the statistical 1994 Winter Simulation Conf(Lake Buena Vista, Florida, De-
error of the final results in sequential steady-state simulation, cember 1994): 723-730.
including a distributed sequential simulation under the Multi- Pawlikowski, K.; D. McNickle; and G. Ewing. 1998. “Coverage
ple Replications in Parallel (MRIP) scenario, as implemented ©of Confidence Intervals in Sequential Steady-State Simulation.”
in Akaroa-2 (Ewing et al. 1999), designed at the University of ~Simulation Practice and Thear§(2): 255-267.
Canterbury, Christchurch, New Zealand. Schriber, T. J. and R. W. Andrews. 1981. “A Conceptual Framework
for Research in the Analysis of Simulation Outpu€bmms. of
the ACM 24(4) (April): 218-232.
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Figure 1: Coverage of the final simulation results with Rule 1,Ro= 1, 2, 3 and 5. SA/HW,
analysis of the mean response time in #¢)//1 /0o queueing system
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Figure 2: Coverage of the final simulation results with Rule 2,Rox 1, 2, 3 and 5. SA/HW,
analysis of the mean response time in #¢) /1 /0o queueing system
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Figure 3: Coverage of the final simulation results with Rule 1/Her1, 2, 3 and 5. NOBM, analysis
of the mean response time in thé/M/1/00 queueing system
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Figure 4: Coverage of the final simulation results with Rule 1,Ao¢ 1, 2, 3 and 5. RM, analysis
of the mean response time in thé/M /1 /oo queueing system



