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ABSTRACT

It is generally accepted that sequential stochastic simulation
is the only practical approach allowing control of the statisti-
cal error of the results of steady-state stochastic simulation. A
commonly used stopping rule of such stochastic simulation is
based on the relative statistical error, since then the magnitude
of the point estimates does not need to be known beforehand.
This relative statistical error of the simulation results can be
measured by the ratio of the half-width of the confidence in-
terval and the point estimate of an analysed performance mea-
sure. Sequential simulation is stopped when this ratio assumes
a satisfactorily low value.

One of the problems of the sequential scenario is that the
inherently random nature of the output data generated by any
stochastic simulation can cause an accidental, temporary satis-
faction of the stopping rule, resulting in acceptance of a wrong
point estimate as the final simulation results. In this paper we
consider two rules of thumb which could be used for improv-
ing the quality of the final results in practical applications of
fully automated sequential simulation, and study their perfor-
mance in three methods of sequential output data analysis.

1 INTRODUCTION

Any stochastic discrete-event simulation should be regarded
as a (simulated) statistical experiment. Hence, statistical
analysis of simulation output is mandatory. Otherwise,“...
computer runs yield a mass of data but this mass may turn
into a mess<if the random nature of such output data is ig-
nored, and then> ... instead of an expensive simulation model,
a toss of the coin had better be used”(Kleijnen 1979).

There are two different scenarios for determining the run-
length of a steady-state stochastic simulation. Traditionally,

the length of such a simulation experiment was set as an input
to simulation programs. In such afixed-sample-size scenario
the final statistical error of the results is a matter of luck. This
is no longer an acceptable approach. Modern methodology of
steady-state simulation offers an attractive alternative, known
as thesequential scenarioof simulation or, simply,sequen-
tial simulation. Today, this scenario is recognised as the only
practical approach allowing control of the statistical error of
the final simulation results, since“... no procedure in which
the run length is fixed before the simulation begins can be re-
lied upon to produce a confidence interval that covers the true
theoretical value with the desired probability ...”(Law and
Kelton 1991). The error control available through sequential
simulation also makes a further step towards automating the
simulation process, for use by people who are not experts in
simulation methodology.

Statistical errors associated with the final results of se-
quential stochastic simulation are commonly measured by the
relative statistical error, defined as the ratio of the half-width
of the confidence interval (CI) and the point estimate of an
analysed performance measure. The simulation follows a se-
quence of checkpoints at which the relative statistical error of
the current estimates is assessed. For example, in the case of
simulation during which a mean valueµ is estimated, when
n observations (or output data) are available at a given check-
point and the estimate ofµ equalsX̄(n), the relative statistical
error of the mean is measured byε(n) = ∆(n)

X̄(n)
, where∆(n) is

the current half-width of the CI forµ at the(1−α) confidence
level; 0 < α < 1. If ε(n) ≤ εmax, whereεmax is the worst
acceptable relative statistical error of the final results at the
(1 − α) confidence level,0 < εmax < 1, then the simulation
can be stopped. Otherwise, the simulation is continued, and
the relative statistical error of results is analysed again when
the next checkpoint is reached. The advantage of using such
relative measure of statistical errors is that simulators do not
need to know the magnitude of the point estimates of perfor-
mance measures they analyse.

The problem is that the inherently random nature of output
data generated during any stochastic simulation can cause an
accidental, temporary satisfaction of the stopping rule, result-



ing in acceptance of a wrong point estimate as the final result.
This problem, and rules of thumb which can protect against
the degradation of the coverage1 of the final results in prac-
tical applications of fully automated sequential simulations,
are discussed in Section 2. The performances of two heuris-
tic rules assessed in different simulation output data analysis
methods are presented in Section 3.

2 PROBLEM AND PROPOSED
SOLUTION

As mentioned, the problem faced in practical applications of
sequential steady-state simulations is that an assumed stop-
ping criterion, for example, based on the relative statistical
error, can be accidently satisfied too early, giving very inac-
curate estimates of the analysed parameters. This happens
due to random fluctuations in the estimated relative statisti-
cal error; see, for example, (Pawlikowski and de Vere 1993).
At least a dozen methods have been proposed for analysing
the CI of autocorrelated time-series of observations collected
for studying the steady-state performance of various stochas-
tic dynamic systems. A survey of methods used until 1990
can be found in (Pawlikowski 1990). Newer methods have
appeared in (Charnes and Chen 1994; Fox et al. 1991; Golds-
man and Kang 1991; Howard et al. 1992).

One of these methods, known as SA/HW (the method
of spectral analysis as proposed in (Heidelberger and Welch
1981)), has been considered to be a good candidate for fully
automated implementations of steady-state simulation, both
in the case of a traditional simulation executed by a single
computer (Pawlikowski 1990) and in the case of a distrib-
uted stochastic simulation executed on multiple computers of
a LAN; see, for example, (Ewing et al. 1999). As with any
other method of sequential analysis of simulation output data,
SA/HW incorporates various approximations. Thus, to find
the best tuning, one has to know its properties.

The theoretical studies of the properties of the CI gener-
ated by a given method of simulation output data analysis can
reveal general conditions which have to be satisfied to secure
the correct coverage, but correctness of any practical imple-
mentation of a specific method also has to be tested experi-
mentally. The results of analysis of coverage of SA/HW have
been reported in (Pawlikowski et al. 1998), together with the
rules forsequential coverage analysis. These preliminary re-
sults of the coverage analysis under the SA/HW have shown
that a satisfactory level of coverage of the final results pro-
duced by the SA/HW can be obtained if one ensures that the
results produced by ‘too short’ simulation runs are discarded.
In (Pawlikowski et al.1998), a simulation run was regarded
as being ‘too short’ if the sequence of simulation output data
it generated was shorter than the mean simulation run-length
minus one standard deviation of the simulation run-length.

1In this paper, the coverage is defined as the experimental frequency with
which the final confidence intervals contain the true (estimated) value. In the
ideal situation, it should be equal to the assumed confidence level.

A closer look at the results associated with such ‘too short’
simulation runs has revealed that the coverage of simulation
results obtained during such ‘too short’ simulation runs can
be very poor indeed; see the third column in Table 1. Each of
the results reported there was obtained on the basis of 3,000
independent replications of the steady-state simulation of the
M/M/1/∞ queueing system. The second and fourth col-
umn gives, respectively, the absolute and the relative number
of ‘too short’ simulation runs in the total number of simula-
tions executed at each load level of this queueing system. The
next columns of this table report the minimum acceptable run-
length of simulation (column five), and the mean simulation
run-length, each over 3,000 replications (column six).

Table 1 clearly shows that the results obtained from
‘too short’ simulation runs, when simulation output data are
analysed by means of the SA/HW, can be very wrong. One
can see, too, that the problem becomes more critical in the
case of higher loaded queueing systems, or, equivalently, in
the case of processes with stronger autocorrelations.

The question is how, in practical applications of sequential
simulation, one could try to avoid using the results obtained by
‘too short’ simulation runs. Therefore, we propose a simple
rule of thumb which could help to eliminate acceptance of
results from ‘too short’ simulation runs. Namely:

Rule 1

• executeR independent replications of a given sequential
simulation and record their run-lengths (measured by the
size of the sample of simulation output data)

• accept the results produced by the longest simulation run
only.

Using the results presented in Table 1, one can assess the
probability of a wrong decision, i.e. the probability that hav-
ing applied Rule 1, one would still have the final results com-
ing from a ‘too short’ simulation. Namely, if one executes R
independent simulation replications,R ≥ 1, then the resulting
probability of a wrong decision will bePR

short, with Pshort be-
ing the probability that a simulation run is ‘too short’.PR

short

is the probability of allR replications belonging to the class of
‘too short’ simulations. Generally speaking,Pshort is hardly
obtainable in simulation practices of real applications. But,
for example, in the case of theM/M/1/∞ queueing sys-
tem our experimental results allow us to assume that a ‘too
short’ simulation run in sequential steady-state simulations,
with output data analysed by the SA/HW, can occur with the
probability Pshort = 0.167 or less; see Table 1, column 4,
for ρ = 0.4. Thus, one can claim that the probability of us-
ing the final results originating from a still ‘too short’ simu-
lation, when applying this rule of thumb withR = 3, is not
larger than0.1673 = 0.005. It drops to0.1675 = 0.00013,
or less, if one repeats the sequential simulationR = 5 times.
Note that these results are similar to the one reported in (Lee
et al. 1999a), in the context of sequential regenerative simu-
lations. One can expect that similar results will characterize



Table 1: Run-length statistics from 3,000 independent simulation replications: SA/HW, M/M/1/∞,
theoretical confidence level = 0.95

Load Number of short runs Coverage Probability(short) Threshold Mean of lengths

0.1 0 N/A 0.0% 1341 1723
0.2 0 N/A 0.0% 1377 2002
0.3 133 83.5% 4.4% 1538 2475
0.4 500 80.2% 16.7% 1813 3278
0.5 297 69.7% 9.9% 2383 4670
0.6 364 63.7% 12.1% 3415 7247
0.7 307 53.1% 10.2% 5214 12727
0.8 236 46.2% 7.9% 9743 27906
0.9 263 38.0% 8.8% 33461 107049

simulation of any stochastic process with correlations similar
to those ofM/M/1/∞ queueing system.

Although in any stochastic simulation, the relative width
of the generated CI randomly changes with the number of col-
lected observations, it has a general trend of shrinking. Thus,
if information about the number of collected simulation out-
put data is not available, one could try to order the lengths
of simulation runs on the basis of the final relative statistical
error of replicated simulation experiments. This gives us the
following, alternative rule of thumb:

Rule 2

• executeR independent replications of a given sequential
simulation and record the final relative statistical error of
results

• accept the results produced with the smallest relative sta-
tistical error only, i.e., take the apparently most accurate
result out ofR results obtained.

Note that both rules suggest discarding R - 1 replications
of R replications executed. This is certainly a significant di-
version from the main concept of an automated sequential
simulation that each such a simulation is run only once, even
without a pilot run (Heidelberger and Welch 1983). On the
other hand, such a rule, although in a different context, was
proposed by D. Knuth in 1969, when he wrote that“... the
most prudent policy for a person to follow is to run each
Monte Carlo program at least twice, using quite different
sources of pseudo-random numbers, before taking the answers
of the program seriously”(Knuth 1969).

Of course, no rules of thumb can ensure that the final CI
from a stochastic simulation will contain the theoretical value
with a probability equal to the assumed confidence level. One
of the ongoing research problems in the area of a sequen-
tial steady-state simulation is to find a method of simulation
output data analysis which would be valid (in the sense of
coverage) when one also applies it in a simulation of highly
dynamic stochastic processes. This problem has been identi-
fied for all methods of simulation output data analysis whose

coverage has been so far analysed sequentially, i.e. it char-
acterises various versions of the method of batch means, the
method of spectral analysis in its SA/HW version, and the
regenerative simulation; see, for example, (Lee et al. 1999;
Mota et al. 1999; Pawlikowski et al. 1998).

In the next section, we will use the results of our ex-
haustive studies of coverage produced by SA/HW, the non-
overlapping batch means (NOBM), and the regenerative
method (RM), for studying the effects of Rules 1 and 2 on
the quality of the final results from the sequential steady-state
simulation.

3 NUMERICAL RESULTS

Since an experimental investigation of the consequences of
‘too short’ simulation runs requires that the exact values of
analysed parameters are known, here, as an example, we have
selected theM/M/1/∞ queueing system as the reference
simulation model of our studies. This queueing system is no-
torious for strong autocorrelations of data in output sequences
and long simulation runs required for achieving satisfactorily
low level of statistical errors, and, because of this, it is com-
monly used as the reference simulation model in research on
methods of simulation output data analysis (Schriber and An-
drews 1981). All the numerical results in this section were
obtained from sequential steady-state simulation runs of the
M/M/1/∞ queueing system, estimating the mean response
time, with εmax · 100% = 10% as the upper level of the ac-
ceptable relative statistical error of the final results, at a con-
fidence level of 0.95. In analysed cases each reported results
was obtained from 2,000 independent simulation replications.
For example, in the case ofR = 5, we studied results of 10,000
replications.

The results presented in Figure 1 clearly show that Rule
1 (taking into account only the longest ofR executed replica-
tions;R = 2, 3 and 5) is a viable policy, and the largerR is, the
better the quality of the final results in terms of coverage. On
the other hand, at least in the cases considered here, there is
no need to assumeR is larger than 3, since already forR = 3



the resulted coverage reaches its ideal level. As the statistical
data of Table 1 show, the probability that the replication is still
in the class of ‘too short’ simulation runs, after discarding two
shorter replications out of three replications executed, drops
to 0.005.

The same simulation results, but screened by applying
Rule 2, are depicted in Figure 2. One can see that discarding
results with larger (but acceptable) levels of relative statisti-
cal errorworsensthe coverage of the final results, regardless
the number of replications executed. Similar results one can
obtained for both the NOBM and the RM. This suggests that,
due to the randomness of the simulation output data, a simula-
tion stopped with a higher (but acceptable) relative statistical
error is not necessarily a shorter one. Typically, in long sim-
ulation runs the convergence of the relative statistical error to
its threshold value is slow but persistent. It is quite likely that
a sudden and significant drop of the relative statistical error
during a sequential simulation, temporarily causing satisfac-
tion of the simulation stopping rule, can be associated with a
‘too short’ simulation run. Thus, Rule 2 should not be applied
in simulation practise since it may lead to the acceptance of
the results from a ‘too short’ simulation run, instead of their
discarding.

The results of experimental studies of Rule 1 with different
simulation output data analysis methods: the NOBM and the
RM are depicted in Figures 3 and 4. The three methods of
output data analysis appear to produce similar results.

4 CONCLUSIONS

This paper addresses the problem of an automated sequen-
tial stochastic simulation, caused by the sequential simulation
being stopped too early, before a sufficiently long sample of
output data has been collected. Having discussed the problem,
its genesis and significance, we propose and study two rules
of thumb that, if applied in simulation practise, can dimin-
ish the probability of having the results coming from such a
prematurely finished simulation to a negligible level. Our ex-
perimental studies show that Rule 1 is a viable heuristic rule,
which can be supported by the results of coverage analysis for
the three methods of output data analysis in sequential steady-
state simulation.

This rule of thumb can be easily implemented in simula-
tion packages offering an automated control of the statistical
error of the final results in sequential steady-state simulation,
including a distributed sequential simulation under the Multi-
ple Replications in Parallel (MRIP) scenario, as implemented
in Akaroa-2 (Ewing et al. 1999), designed at the University of
Canterbury, Christchurch, New Zealand.
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Figure 1: Coverage of the final simulation results with Rule 1, forR = 1, 2, 3 and 5. SA/HW,
analysis of the mean response time in theM/M/1/∞ queueing system
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Figure 2: Coverage of the final simulation results with Rule 2, forR = 1, 2, 3 and 5. SA/HW,
analysis of the mean response time in theM/M/1/∞ queueing system
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Figure 3: Coverage of the final simulation results with Rule 1, forR = 1, 2, 3 and 5. NOBM, analysis
of the mean response time in theM/M/1/∞ queueing system
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Figure 4: Coverage of the final simulation results with Rule 1, forR = 1, 2, 3 and 5. RM, analysis
of the mean response time in theM/M/1/∞ queueing system


