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ABSTRACT

The main drawback of quantitative stochastic
simulation approach is the usually prohibitive
amount of computer time necessary to give rea-
sonable results. Multiple Replications in Paral-
lel (MRIP) aims to attack this issue by generat-
ing data in parallel, asynchronously, through a
local area network of workstations. We investi-
gated the performance of sequential confidence
interval procedures based on overlapping batch
means and standardized time series, when they
are used to estimate mean values of steady-state
processes under Akaroa-2, an MMRIP imple-
mentation. Reasoning of both methods are ex-
plained and sequential versions proposed and
implemented as well.

1 INTRODUCTION

The main drawback of quantitative stochastic
simulation approach is the usually prohibitive
amount of computer time necessary to give rea-
sonable results. Assuming there is no problem
with model verification and validation phases,
time-consuming problem arises from the neces-
sity of a large amount of observations to yield
an accurate result.
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Multiple Replications in Parallel (MRIP)
aims to attack this issue by generating data in
parallel, asynchronously, through a local area
network of workstations. Despite the increasing
computer power, there will be always a neces-
sity of statistical analysis of data if accuracy of
results is an issue. There are two ways of an-
alyzing data : (i) fixing a priori the amount
of computer time or the maximum number of
observations to be collected; or (ii) analyzing
data sequentially as they are produced during
simulation, and stopping the simulation when a
predefined accuracy is achieved.

The former, also known as fixed-sample-size
scenario, the final statistical error can not be
controlled in advance, since ”. .. no procedure in
which the run length is fized before the simu-
lation begins can be relied upon to produce a
confidence interval that covers the true theoreti-
cal value with the desired probability” (Law and
Kelton, 1991). The latter approach, also known
as sequential scenario, offers an attractive way
to control the precision of results. The impor-
tance of sequential procedure is widely recog-
nized and they become more and more often
used by practitioners as methods for controlling
the precision of simulation results.

In this paper we consider a practical imple-
mentation of a sequential confidence interval
procedures (CIP) based on Standardized Time



Series (STS) proposed by (Schruben 1983),
and compare it against a sequential version of
overlapping batch means (OBM), proposed by
(Meketon and Schmeiser 1984). The main cri-
teria of comparison are the final coverage of re-
sults, the average run length given by the num-
ber of observations required to stop the simula-
tion, and the variability of the final confidence
intervals. We also consider en passant other is-
sues related to MRIP.

2 BATCHING
TECHNIQUES

The problem of constructing a confidence in-
terval for the steady-state mean of performance
parameter, has offered a vast field of research
and the main practical problem is due the pres-
ence of strong correlations among observations
of simulated processes, also in steady state. Pos-
itive correlations, very common in queuing sys-
tems, denote negative bias and, thus, the final
confidence interval half-width can be underesti-
mated, which leads frequently to the final cov-
erage lower than the nominal confidence level.
By coverage we mean the frequency that the fi-
nal confidence intervals contain the true value
being estimated.

Theoretically, steady state occurs in the limit
when the run length increases to infinity, but in
practice there is a point from which one can as-
sume observations have almost the same distri-
bution. Even though, observations are usually
strong correlated and classical statistics tech-
niques can not be applied directly.

To get rid of this tactical problem, sev-
eral methodologies for estimation of confidence
interval on the mean of sequence of corre-
lated observations have been proposed over the
last decades. The main difference among these
methodologies is the way they estimates vari-
ance of the mean. For a thorough review of
this and other related problems refer to (Paw-
likowski 1990).

Batching methods are supposed to be intu-
itive and ease to implement, although many

issues are still open; especially if one consid-
ers their applications under distributed stochas-
tic simulation. The fundamental assumption of
batch means methods is that there exists a num-
ber Bx* of batches, or equivalently a batch size
M*, such that the batch means are i.i.d. normal
random variables (Schmeiser 1982).

2.1 Sequential CIP based on OBM

The main issue of every batch-means-based pro-
cedure is the determination of the minimum
batch size M* that leads to (almost) uncorre-
lated batch means. After collecting N observa-
tions, one should divide them into B batches
of size M (N=B.M), and test the batch means
against correlation, by applying a test of sta-
tionarity proposed for example in (Schruben
1982). If the test fails, the batch size is in-
creased, more observations are collected and the
correlation test is repeated. If the test succeeds,
observations are grouped in a somewhat dif-
ferent way, where each observation initiates an
(overlapped) batch of size M*. The procedure
continues collecting more observations, each ob-
servation giving rise to an overlapped batch,
and batch means are used to estimate the pa-
rameter of interest.

Overlapping Batch Means — OBM, has been
considered to be the most promising techniques
among batching-based methods of simulation
analysis under Multiple Replications in Parallel
(Mota 1999). Nevertheless, it still suffers of an
additional burden relative to the length of the
phase that the most convenient size of batches
are being searched for, namely the batch size
determination phase — BSD.

2.2 Sequential CIP based on STS

This approach takes another order of ideas to
generate confidence intervals for steady-state
simulation, that can still be based on batching.
Instead of standardizing a single scalar, e.g. the
sample mean of an output time series Y; (i=1,2,
..., N), Schruben (Schruben1983) suggests the
standardization of the entire time series, defined



as
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where Y; = 37,V /4, j=1, ..., N, and [.]
denotes the greatest integer function.

The transformed series converges asymptot-
ically to a standard Brownian bridge process,
whose properties are used to construct a confi-
dence interval.

After standardizing each observation one can
find random variables A;, the asymptotic scaled
sum of T;(t), for each batch by means of

L) =

, 0<t <)

Ai = U\/J\_/fiTi(t) (2)
k=1

M kL
= > > (Yi-Y)
k=1j=1

A simplification can be found toward facili-
tating a sequential procedure. From (2) and (1)
one can find that
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By computing the statistic
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an asymptotically valid combined classical-
sum interval estimator [Y +H] can be
constructed for performance parameter
W, considering that A
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3 AN MRIP
IMPLEMENTATION

We used Akaroa-2, an implementation of a sim-
ple yet effective approach for speeding up se-
quential simulation known as Multiple Replica-
tions in Parallel (Pawlikowski 1994).

Akaroa-2 is a user-friendly simulation pack-
age, written in C++4, designed for automated
parallelization of ordinary simulation models
and fully automated control of accuracy of the
final results. It permits a simulation model be
executed on different processors in parallel, try-
ing to produce IID observations by initiating
each replication with a nonoverlapping stream
of pseudorandom numbers. All series of repli-
cated simulations are executed using strictly
nonoverlapping sequences of pseudo-random
numbers provided by exhaustively tested gen-
erators.

Essentially, a master process (Akamaster) is
started on a processor that acts as a manager,
while one or more slave processes (akslave) are
started on processors that take part in the simu-
lation experiment, forming a pool of simulation
engines. Akaroa-2 takes care of the fundamental
tasks of launching the same simulation model
on the processors belonging to that pool, con-
trolling the whole experiment and offering an
automated control of the accuracy of the simu-
lation output.

At the beginning, stationary tests due to
(Schruben 1982) are applied locally within each
replication, to determine the onset of steady
state conditions in each time-stream separately,
and the sequential version of the CIPs are used
to estimate the variance of local estimators at
consecutive checkpoints.

Each simulation engine keeps on generating
output observations. These observations are col-
lected by a local analyzer, who is responsible for
determining the locations of checkpoints, that
is, the instants at which a group of observations
is sufficient to yield a reasonable estimate to
the global analyzer, residing in the processor
running akmaster. The global analyzer calcu-



lates a global estimate, based on local estimates
delivered by individual engines, and a simula-
tion manager verifies if the required precision is
reached. When it happens then the overall sim-
ulation is finished. Otherwise, more local obser-
vations are required, so simulation engines con-
tinue their activities.

By achieving a checkpoint, the current local
estimate and its variance are sent to the global
analyzer which computes the current value of
the global estimate and its precision. A check-
point is associated with determining an esti-
mate of type
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where X,; and V; are the sample mean
and variance, respectively, obtained by apply-
ing one of the methods of analysis mentioned
above. Particularly, we are interested in meth-
ods based on batching approach, as they are
practical, though many issues remain open, es-
pecially regarding its implementation in a paral-
lel simulation environment such as that created
by Akaroa-2.

There is a global analyzer in Akaroa-2 for
each performance parameter being estimated,
which averages estimates coming from proces-
sors. The grand mean and its variance can be

found by

- Y N.X
X =5 (4)
_ N2.Vi
Var[X] = % (5)

More details can be found in (Mota 2000).

4 PERFORMANCE
COMPARISON

In order to compare the performance of sequen-
tial CIPs based on OBM and STS, we investi-
gated their performance to Akaroa-2, through

the simulation of the mean waiting time of
four queuing systems with increasing coefli-
cient of variation of the service times, namely,
M/D/1,M/E4/1,M/M/1 and M/Hs/1. We
are going to compare here the CIP’s perfor-
mance considering the most correlated process,
namely M/Hy/1, as it imposes more difficulty
in the analysis.

The number of processors used was P=2,6
and 10, traffic intensity 0.90 and stopping rule
adopted was a 5%-relative precision. It is worth-
while to say that adding more processors re-
duces always the simulation completion time,
but it remains a question whether this would
lower the quality of the results.

The main criterion of comparison is the cover-
age of results, and we have applied the sequen-
tial coverage analysis proposed by (Pawlikowski
et al. 1998). That is, coverage analysis is initi-
ated only after collecting a minimum number
of bad confidence intervals (e.g. 200). Too short
simulation runs are, then, discarded, and the se-
quential coverage analysis stops when the rela-
tive precision of the half-width of the confidence
interval for the coverage is less than or equal 5%.
Instead of investigating coverage analysis for a
single confidence level, we followed the sugges-
tion of (Schruben 1980) and investigated for a
range of values varying from 0.1 to 0.95.

Fig. 1 shows the coverage function for both
CIPs. When the underlying assumptions are
satisfied, a perfect procedure would yield fi-
nal coverage following the 45-grade-straight-
line. Values below that line indicate an underes-
timated confidence intervals, while values above
that line indicate that the procedure collected
more observations than it is needed, that is, a
waste of resources.

We can observe that OBM behaves almost
ideally, whereas STS seems to be not so effec-
tive for lower values of confidence level. They
are both robust procedures, however, as they
converge to the ideal case as long as the run
length increases.

Fig. 2 shows the average total number of ob-
servations collected by the end of the simula-
tion. The magnitude of this value was almost



equivalent for both procedures, but for lower
values of confidence level, STS required less
observations to achieve the desired precision,
what could in some sense explain the degrada-
tion in coverage for that region. Nevertheless,
STS presents a very interesting behavior for a
CIP under MRIP. One could expect that adding
more processors should result in a correspond-
ing decrease in the total number of observations
necessary to stop the simulation. This is clearly
visible in the case of STS.

Fig.3 summarizes the variability of the final
confidence intervals by looking at the coefficient
of variation of the half-width H, given by
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CoV[H| = E[H]

It is obvious that OBM is more stable than
STS, although difference diminishes as the con-
fidence level increases.

5 CONCLUSIONS

In general, in MRIP application, both sequen-
tial procedures behave attractively for highly
correlated queuing processes, i.e. processes that
create the main analytical problem for simula-
tion output data analysis.

OBM is robust and stable, and offers a
very attractive alternative when applied under
MRIP. Other variants of batch means wait to
form a complete batch before sending an es-
timate to the global analyzer, that is, before
yielding a checkpoint. With OBM, this granu-
larity can be as short as 1, and one can achieve
higher degrees of speedup. A possible drawback
seems to be the overload put on the global ana-
lyzer. This issue is being currently investigated.

Although STS produces less stable confidence
intervals than OBM for lower values of confi-
dence levels, it offers an attractive feature for
being used under MRIP. Namely its BSD phase
(the detection of normality of Als) is shorter
than that of the OBM (the test of independence
of the batch means). It means that paralleliza-
tion of STS can be more efficient than of the

OBM. The question of granularity could be re-
solved if one applies the same idea of overlapped
batches. It is being investigated and will appear
soon in a future work.
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Fig. 1: Coverage function: OBM (L) and STS (R)
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Fig. 2: Average total number of observations: OBM (L) and STS (R)
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Fig. 3: Coefficient of variation of H: OBM (L) and STS (R)



