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ABSTRACT

In telecommunication networks, as in many other areas of
science and engineering, proliferation of computers as re-
search tools has resulted in the adoption of computer simu-
lation as the most commonly used paradigm of scientific in-
vestigations. This, together with a plethora of existing simu-
lation languages and packages, has created a popular opinion
that simulation is mainly an exercise in computer program-
ming. In new computing environments programming can be
minimised, or even fully replaced, by manipulation of icons
(representing pre-built programming objects with basic func-
tional blocks of simulated systems) on a computer monitor.
One can say that we have witnessed another success of mod-
ern science and technology: an emergence of wonderful and
powerful tools for exploring and predicting behaviour of such
complex, stochastic dynamic systems as telecommunication
networks.

But this enthusiasm is not shared by all researchers in this
area. An opinion is spreading that one cannot rely on the ma-
jority of the published results on performance evaluation stud-
ies of telecommunication networks based on stochastic simu-
lation, since they lack credibility, and the spread of this phe-
nomenon is so wide that one can speak about a deep credibil-
ity crisis. In this paper, this claim is supported by the results
of a survey of publications on telecommunication networks in
recent proceedings of the INFOCOM (an annual IEEE Inter-
national Conference on Computer Communications) and in
the IEEE Transactions on Communications.

We also discuss the main issues that influence the credibil-
ity of simulation results, their perils and pitfalls, and formu-
late guidelines that, if observed, could help to assure a basic
level of credibility of simulation studies of telecommunica-
tion networks.

1 Introduction

The last decade of the twentieth century will be remem-
bered as a time when computers found their place in pri-
mary schools and in private homes, and became ordinary
items of equipment on desks in offices and businesses. This
is also a time when the computing paradigm has begun its
drift from computer networks to network computing. There
is enormous interest, both in industry and academia, in cre-
ating an AAA network, a world-wide computer network able
to offer Any information service, accessible from Any place
and at Any time. Before it happens, scientists and engineers
will have to investigate many challenging problems of net-
work technology, and evaluate their possible solutions. These
research activities are certainly accelerated by achievements
in the area of scientific computing, with various easy-to-use
software packages specially designed for conducting perfor-
mance evaluation studies of telecommunication networks.

In the area of telecommunication networks, as in many
other area of science and engineering, proliferation of com-
puters as research tools has resulted in wide adoption of com-
puter simulation as a new paradigm of scientific investiga-
tion, in addition to two traditional ones: theoretical studies
and experimentation. Various user-friendly simulation pack-
ages offer sophisticated graphical user interfaces, animation
of simulated processes, etc. This has created a climate for
spreading a popular opinion that simulation is mainly an ex-
ercise in computer programming. Further, this programming
can be greatly simplified, since there is a plethora of simula-
tion languages which reduce designing of simulation models
of telecommunication networks to placing icons (representing
basic functional blocks of networks) in appropriate locations
on a computer monitor, and then initiating simulation by se-
lecting an appropriate button from a menu bar.

One can say that we have witnessed another success of
modern science and technology: an emergence of wonderful
and powerful tools for exploring and predicting behaviour of
such complex, stochastic dynamic systems as telecommuni-
cation networks. As a matter of fact, stochastic discrete-event
simulation has already become a commonly used tool of sci-
entists and engineers in this area, contributing to about 50%
of all published research results; see Figure 1. The figure de-
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Figure 1:Proportion of all surveyed papers reporting results
obtained by stochastic simulation

picts the data obtained from a survey of all papers published
in proceedings of the INFOCOM (an annual IEEE Interna-
tional Conference on Computer Communications) between
1992 and 1998 (with the total number of papers per year rang-
ing between 156 and 177 each), as well as in the IEEE Trans-
actions on Communications between 1996 and 1998 (with the
total of 230, 227 and 200 papers published, respectively, each
year).

This enthusiasm is not shared by all simulation developers
and users. A contrary opinion is spreading that stochastic sim-
ulation, as a performance evaluation tool of various dynamic
systems, including telecommunication networks, is misused
and that the spread of this phenomenon is so wide that one
can speak about a deep credibility crisis. It is claimed that
one cannot rely on the majority of the published results on
performance evaluation studies of dynamic systems based on
stochastic simulation, since they lack credibility.

In this paper we look at the motivation of such claims.
We narrow our interest to the application of stochastic
discrete-event simulation in performance evaluation studies
of telecommunication networks, and discuss the main issues
that can effect the credibility of simulation results, their perils
and pitfalls, as well as formulate guidelines that, if observed,
could help to achieve a basic level of credibility of simulation
studies of telecommunication networks.

2 The issue of credibility

P. J. Kiviat in his opening address of the Summer Computer
Simulation Conference SCSC’90 (Kiviat 1991) stated that”...
succeeding in simulation requires more than the ability to
build useful models ...”. Some experts assess that modelling
phase of a system for simulation consumes only 30-40% of
the total effort in most successful simulation projects (Law
and McComas 1991). The first necessary step of any perfor-
mance evaluation studies based on stochastic simulation is to
use avalid simulation model. In the case of telecommunica-
tion networks, it means a valid conceptual model of the net-

work, based on appropriate assumptions about the network’s
internal mechanisms, limitations, stochastic characteristics of
processes which will be simulated etc. A good discussion of
general guidelines on how to build valid simulation models
can be found for example in (Law and Kelton 1991). But this
is only the first step for ensuring credibility of the final results
of simulation studies.

The next step is to ensure that the valid simulation model is
used in avalid simulation experiment. Two main issues, that
have to be addressed when trying to ensure validity of any
stochastic simulation-based experiment, are: (i) application
of appropriate source(s) of randomness, and (ii) appropriate
analysis of simulation output data. Let us look closer at these
two issues.

Sources of randomness

It is generally accepted and commonly used practise today
that algorithmic generators of (pseudo-random) uniformly
distributed numbers are used as sources of basic randomness
in stochastic simulation. The search for pseudo-random num-
ber generators (PRNGs), able to pass the most strict theo-
retical and practical requirements, has resulted in a number
of good PRNGs, such as inversive congruential generators
which do not exhibit lattice structures of n-dimensional ran-
dom vectors (Leeb and Wegenkittl 1997), and the Mersenne
Twister (Matsumoto and Nishimura 1998), a fast generator
with the length of cycle equalM = 219937 − 1 (!). The most
popular PRNGs, multiplicative congruential generators with
the modulus ofM = 231 − 1 have been exhaustive tested and
a list of the best 10 of them (together with 404 slightly worse
ones) in this class has been published in (Fishman and Moore
1986). Thus, there are many PRNGs of acceptable quality to
choose from and to apply in standard simulation, on single
processors.

This does not mean that all problems related with PRNGs
have been solved. For example, there is a problem with use of
uniformly distributed pseudo-random numbers from the same
generator in distributed and/or parallel simulation, because of
potential correlations existing between disjoint substreams of
consecutive numbers (Entacher 1998; Hellekalek 1998). In
such types of simulation one should use PRNGs with extreme
caution. As A. Compagner, of the Technical University of
Delft, the Netherlands, wrote :”... results <of stochastic
simulation> are misleading when correlations hidden in the
random numbers and in the simulated system interfere con-
structively ...” (Compagner 1995).

But, in the case of traditional, non-distributed and non-
parallel simulation on single processors, one has to be care-
ful too. Uncontrolled distribution of various computer pro-
grams has resulted in uncontrolled proliferation of really poor
PRNGs, of clearly unsatisfactory or unknown quality. Thus,
the advice given by D. E. Knuth of Stanford University in
1969 is even more important today, in the era of Internet:”...
replace the random generators by good ones. Try to avoid
being shocked at what you find ...”(Knuth 1969).

A longer list of useful practical guidelines on how to use,



or do not use, PRNGs in simulation studies can be found for
example in (Jain 1991), together with the advice that:”... it
is better to use an established generator that has been tested
thoroughly than to invent a new one ...”.

Simulation output data analysis

Any stochastic computer simulation, in which random
processes are simulated, has to be regarded as a (simulated)
statistical experiment and, because of that, application of sta-
tistical methods of analysis of (random) simulation output
data is mandatory. Otherwise, J. Kleijnen of the University
of Tilburg, the Netherlands, warns that”... computer runs
yield a mass of data but this mass may turn into a mess<if
the random nature of such output data is ignored, and then>
... instead of an expensive simulation model, a toss of the coin
had better be used”(Kleijnen 1979).

Statistical error associated with the final result of any sta-
tistical experiment or, in other words, the degree of confi-
dence in the accuracy of a given final (point) estimate, is
commonly measured by the corresponding interval estimate,
i.e. by the confidence interval (CI) expected to contain an un-
known value, with the probability of this to happen known as
the confidence level. In any correctly implemented simula-
tion, the width of a CI will tend to shrink with the number
of collected simulation output data, i.e. with the duration of
simulation.

Two different scenarios for determining the duration of sto-
chastic simulation exist. Traditionally, the length of simula-
tion experiment was set as an input to simulation programs.
In suchfixed-sample-size scenario, where the duration of sim-
ulation is pre-determined either by the length of the total sim-
ulation time or by the number of collected output data, the
magnitude of the final statistical error of results is a matter of
luck. This is no longer an acceptable approach !

Modern methodology of stochastic simulation offers an at-
tractive alternative solution, known as thesequential scenario
of simulation or, simply,sequential simulation. Today, the se-
quential scenario is recognised as the only practical approach
allowing control of the error of the final results of stochastic
simulation, since”... no procedure in which the run length is
fixed before the simulation begins can be relied upon to pro-
duce a confidence interval that covers the true steady-state
mean with the desired probability level”(Law and Kelton
1991). Sequential simulation follows a sequence of consec-
utive checkpoints at which the accuracy of estimates, conve-
niently measured by therelative statistical error(defined as
the ratio of the half-width of a given CI and the point esti-
mate), is assessed. The simulation is stopped at a checkpoint
at that the relative error of estimates falls bellow an acceptable
threshold.

There is no problem with running simulation sequentially
if one is interested in performance of a simulated network
within a well specified period of (simulated) time; for exam-
ple for studying performance of a network during the first 24
hours of its operation. This is the so-calledterminatingor afi-
nite time horizon simulation. In our example, one would sim-

ply need to repeat the simulation (of the 24 hours of network’s
operations) an appropriate number of times, using different,
statistically independent sequences of pseudo-random num-
bers as basic source of randomness in different replications
of the simulation. This ensures that the sample of collected
output data (one data item per replication) can be regarded as
representing independent and identically distributed random
variables, and confidence intervals can be calculated using
standard, well-known methods of statistics.

When one is interested in studying behaviour of networks
in steady-state, then the scenario is more complicated. First,
since steady-state is theoretically reachable by a network after
infinitely long period of time, the problem lies in execution of
steady-state simulationwithin a finite period of time. Various
methods of approaching that problem, in the case of analysis
of mean values, are discussed for example in (Bratley et al.
1983) and (Pawlikowski 1990). Each of them involves some
approximations. Most of them (except the so-called method
of regenerative cycles) require that data collected at the be-
ginning of simulation, during initial warm-up periods, are not
used to calculate steady-state estimates. If they are included
in further analysis, they can cause a significant bias of the
final results; see for example (Stacey et al. 1993). Deter-
mination of the lengths of warm-up periods can require quite
elaborate statistical techniques (Goldsman et al. 1994). When
this is done, one is left with a time series of (heavily) corre-
lated data, and with the problem of estimation of confidence
intervals for such data. But, although the search for robust
techniques of output data analysis for steady state simulation
continues (Pawlikowski et al. 1998), reasonably satisfactory
implementations of basic procedures for calculating steady-
state confidence intervals of, for example, mean values and
quantiles have been already published; see for example (Paw-
likowski 1990) and (Raatikainen 1990).

There are claims that sequential steady-state simulation,
and the associated with it problem of analysis of statistical er-
rors, can be avoided by running simulation experiments suf-
ficiently long, to make any influence of the initial states of
simulation negligible. While suchbrute force approachto
stochastic steady-state simulation can sometimes lead to ac-
ceptable results (the author knows researchers who execute
their network simulations for a week, or longer, to get the
results, they claim, that represent steady-state behaviour of
simulated networks), one can still finish with very statistically
inaccurate results. It should be remembered that in stochas-
tic discrete-event simulation collecting of sufficiently large
sample of data is more important than simply running the
simulation over a long period of time. For example, when
analysing rare events, the time during that the simulated net-
work is ”idle”, i.e. without recording any event of interest, has
no influence on the statistical accuracy of the estimates of the
event. What matters is the number of the events of interest
recorded. This phenomenon is illustrated in Table 1, which
shows that estimates of the mean delays of packets, obtained
from a simulation of a DQDB network with 20 stations, over
1 500 000 time slots, can still be associated with as high rela-
tive error as 43%, or more (Lee 1991). The explanation, given



in (Lee 1991), is clear: during this simulation many simulated
time slots were idle. When there was no packet for transmis-
sion, no packet delay was measured, and no output data was
collected.

station traffic load
20% 60% 90%

1 0.090 0.048 0.101
2 0.059 0.047 0.090
3 0.103 0.055 0.120
4 0.131 0.057 0.101
5 0.110 0.038 0.137
6 0.131 0.049 0.128
7 0.109 0.080 0.084
8 0.069 0.056 0.119
9 0.081 0.080 0.108
10 0.135 0.076 0.157
11 0.208 0.062 0.172
12 0.186 0.091 0.212
13 0.226 0.091 0.145
14 0.314 0.143 0.106
15 * 0.102 0.202
16 * 0.145 0.203
17 * 0.211 0.243
18 * 0.248 0.430
19 * * *

Table 1:Relative error of mean packets delays at stations of
a DQDB network with 19 transmitting stations. All results
obtained at 0.95 confidence level. The simulation lasted for
1 500 000 (simulated) time slots. Cases where the relative
error were not assessed are marked by * (from (Lee 1991))

Obtaining final simulation results with small statistical er-
ror is especially important in comparative performance evalu-
ation studies of alternative solutions. This phenomenon is il-
lustrated by Figure 2, which shows the results of comparative
analysis of three alternative versions of a reservation protocol
for a wireless ATM network with integrated services (Rez-
van 1998). The results were obtained by means of sequential
simulation, continued until the relative error of the estimates
became as small as 10% (in Figure 2.a), or as small as 5% (in
Figure 2.b). One can see that results obtained with too large
statistical error can be misleading or inconclusive. In this par-
ticular case, using the results with the error of 10%, one could
erroneously conclude that two of three versions of the inves-
tigated protocol are equivalent as long as no more than 10-12
VBR terminals are used.

Unfortunately, sequential stochastic simulation is not very
popular among designers of commercial simulation packages,
with overwhelming majority of them allowing analysis of out-
put data only after the simulation is finished. Such packages
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(a) Results with statistical errors of 10% or less
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(b) Results with statistical errors of 5% or less

Figure 2:Example showing influence of statistical errors on
the final simulation results. Evaluation of three alterna-
tive versions of a reservation protocol for a wireless ATM
network with integrated services; the assumed confidence
level=0.95 (from (Rezvan 1998))

as, for example, SIMSCRIPT II.51, QNAP22 or Prophesy3

are among the few exceptions. To this list of (commercial)
packages able to execute stochastic simulation sequentially,
one could also add a few packages designed at universities
and offered as freeware for non-profit research organisations.
One of such packages is Akaroa-2 (Ewing 1999), designed at
the University of Canterbury, in Christchurch, New Zealand.

3 Crisis

It would be probably difficult to find a computer scientist or
telecommunication engineer today who has not been trained

1A product of CACI, see http://www.caciasl.com
2From Simulog; see http://www.simulog.fr
3From Abstraction Software; see http://www.abstraction.com
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Figure 3:Proportion of all surveyed papers based on simu-
lation in which results were statistically analysed

how to assess and minimise errors inevitably associated with
statistical inference. Nevertheless, looking at further results
of our survey of eight recent proceedings of the INFOCOM
and three recent volumes of the IEEE Transactions on Com-
munications, one can note, see Figure 3, that, on average,
about 77% of authors of simulation-based papers on telecom-
munication networks were not concerned with the random na-
ture of the results they obtained from their stochastic simula-
tion studies and either reported purely random results or did
not care to mention that their final results were outcomes of an
appropriate statistical analysis. Let us add that Figure 3 was
obtained assuming that even papers simply reporting average
results (say, averaged over a number of replications), with-
out any notion of statistical error, were increasing the tally of
papers ”with statistically analysed results”.

While one can claim that the majority of researchers in-
vestigating performance of networks by stochastic simulation
simply may not mention that their final results have been sub-
jected to an appropriate statistical analysis, this is not an ac-
ceptable practise.

Probably everybody agrees that performance evaluation
studies of telecommunication networks should be regarded
as a scientific activity in which one tests hypotheses on how
these complex systems would work if implemented, includ-
ing even their possibly most critical conditions. But if this
is a scientific activity, then one should follow thescientific
method, generally accepted methodological principle of mod-
ern science (Popper 1968). This method says thatany sci-
entific activity should be based on controlled and repeatable
experiments.

Through many repetitions of a non-sequential simulation
one can eventually obtain the final results with acceptably
small statistical errors. Thus, using non-sequential simula-
tion it is still possible to control the error of final results. But,
the real problem is that the vast majority of simulation experi-
ments reported in telecommunication network literature is not
repeatable. A typical paper contains very little or no informa-
tion about how simulation was run. Our survey revealed that
in almost 52% of papers reporting simulation-based results

one would not find even if this was a terminating or steady-
state simulation.

While the principles of the scientific method are generally
observed by researchers in such natural sciences as biology,
medicine or physics, this crisis of credibility of scientific out-
comes is not limited to the area of telecommunication net-
works but has spanned over whole area of computer science,
as well as electronic and computer engineering, despite of
such early warnings like that in 1990, by B. Gaither, then
the Editor-in-Chief of the ACM Performance Evaluation Re-
view, who, being concerned about the way in which stochastic
simulation was used, wrote that he was unaware of”... any
other field of engineering or science<other than computer
science and engineering> where similar liberties are taken
with empirical data ...” (Gaither 1990). What can be done
to change the attitude of writers (who, of course, are also re-
viewers) of papers reporting simulation studies of telecom-
munication networks ? Consequences of drawing not fully
correct, or false, conclusions about a network performance
can be huge. On the other hand, thorough prediction of net-
works’ performance could make such disasters as the 1990
failure of AT&T’s entire long distance network avoidable. An
interesting discussion of this type of dangers associated with
modern computer and network technology can be found, for
example, in (Lee 1992).

4 A Solution ?

The credibility crisis of simulation studies of telecommunica-
tion networks could be resolved if some obvious guidelines
of reporting results of simulation studies were adopted.

First, the reported simulation experiments should be repeat-
able. This should mean that information about

• the PRNG(s) used during the simulation, and

• the type of simulation,

is provided.
In the case of terminating simulation, its time horizon

would need to be specified, of course. The next step would
be to specify

• the method of analysis of simulation output data, and

• the final statistical errors associated with the results.

High level of credibility of the final simulation results can-
not be obtained without assessing their statistical errors, al-
though sometimes, in preliminary studies, it can be accept-
able to reduce the randomness of output results of simulation
simply by repeating the simulation a number of times and
averaging the results over replications. D. Knuth wrote that
”... the most prudent policy for a person to follow is to run
each Monte Carlo program< or stochastic simulation of a
telecommunication network> at least twice, using quite dif-
ferent sources of pseudo-random numbers, before taking the
answers of the program seriously.”(Knuth 1969).



As mentioned, to achieve full credibility of a simulation
one needs to develop valid simulation models and to use them
in valid simulation experiments. The former includes accurate
procedural representation of the simulated system’s function-
ality as well as semantic and syntax correctness of simulation
programs. The most effective way of achieving the latter is to
use good, thoroughly tested PRNGs and to control statistical
errors of simulation results by analysing them sequentially,
i.e. to control the magnitude of statistical errors of results by
stopping the simulation when the errors of the results reach a
satisfactorily low level.

Negligence of proper statistical analysis of simulation out-
put data cannot be justified by the fact that some stochas-
tic simulation studies, in particular those aimed at evaluat-
ing simulated systems in their steady-state, might require so-
phisticated statistical techniques. On the other hand, it is true
that in many cases of practical interest, appropriate statistical
techniques have not been developed yet. But, if this is the
case, then one should not pretend that he/she is executing a
precise quantitative study of performance of a telecommuni-
cation network.

5 Final Comments

In this paper we have indicated the basic credibility issues of
simulation studies of telecommunication networks, by look-
ing at them as at computer-simulated statistical experiments.
The results of a survey of recent research publications in this
area of science and engineering suggest that the majority of
recently published results of simulation studies of telecom-
munication networks do not satisfy basic criteria of credibil-
ity.

Of course, simulations of telecommunication networks are
often computationally intensive and can require long runs in
order to obtain results at a desired level of precision. Ex-
cessive runtimes hinder development and validation of sim-
ulation models. Research on speeding up execution of sim-
ulation of telecommunication networks is one of challenging
problems which has attracted a considerable scientific interest
and effort.

One direction of research activities in this area has been
focused on developing methods for concurrent execution of
loosely-coupled parts of large simulation models on multi-
processor computers, or multiple computers of a network. So-
phisticated techniques have been proposed to solve this and
related problems, surveyed for example in (Fujimoto 1990;
Nicol and Fujimoto 1994; Bagrodia 1996). In addition to ef-
ficiently managing the execution of large partitioned simula-
tion models, this approach can also offer reasonable speedup
of simulation, provided that a given simulation model is suf-
ficiently decomposable. Unfortunately, this feature is not fre-
quently observed in practice, thus the efficiency of this kind
of distributed simulation is strongly model-dependent (Wag-
ner and Lazowska 1989).

In the context of stochastic simulation, there is yet another
(additional) solution possible for speeding up such simula-

tion. Namely, collecting of sufficient output data for their se-
quential analysis can be speeded up if the data are produced
in parallel, by multiple simulation engines running statisti-
cally identical simulation processes. This approach to distrib-
uted stochastic simulation is known as Multiple Replications
In Parallel (MRIP) (Pawlikowski et al. 1994).

Several research projects around the world, including
project EcliPse (Rego and Sundram 1992) at Purdue Univer-
sity in West Lafayette, USA, and project Akaroa (Yau and
Pawlikowski 1993; Ewing et al. 1999) at the University of
Canterbury, in Christchurch, New Zealand, have been devel-
oping simulation methodologies able to fully use the enor-
mous distributed power of modern computer networks. There
are many challenging issues, and there is noticeable progress
in this area.

One can expect that the credibility problem of practical ap-
plications of simulation will be overcome soon. An adoption
of the basic guidelines indicated in this paper could be the first
step in this direction. As stated at the beginning of this paper,
the last decade of the twentieth century will be remembered as
a time when computers found their place in primary schools
and in private homes, and became ordinary items of equip-
ment on desks in offices and businesses. Will this decade be
also remembered as the time when the network research com-
munity abandoned the principles of the scientific method ?
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