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Abstract

An inherent problem of quantitative stochastic simulation, conducted for assessing performance qual-
ity of dynamic stochastic systems, such as for example telecommunicaiton networks or industrial
production processes, is the issue of credibility of the final results. There is general agreement that
the only practical way for obtaining statistically accurate results from such simulation studies is to
analyze simulation output data sequentially. An attractive feature of such approach is that it can be
fully automated, although its direct application can be hindered in practice by the fact that, even
in the case of moderately complex models, very long simulation runs can be required to get results
with a satisfactory level of statistical errors.

To speed up such simulation one can try to simulate parts of a given model concurrently, on
multi-processor computers or multiple computers of a network. Such scenario can offer reasonable
speedup of simulation, provided that a given simulation model is sufficiently decomposable.

An alternative solution is to run stochastic sequential simulation in parallel, on multiple processors
acting as independent simulation engines. The simulation engines produce output data coming from
statistically independent replications of simulated processes. The output data from all simulation
engines are submitted to a global analyzer for statistical analysis. This approach to distributed
stochastic simulation can offer speedup equal to the number of simulation engines employed, and its
efficiency is independent from the simulated model. We will discuss main properties of this scenario
of distributed stochastic simulation, as well as its implementation in AKAROA-2, a fully automated
simulation tool designed at the University of Canterbury in Christchurch, New Zealand, for executing
the distributed stochastic simulations on clusters of computers in local area networks.

1 Introduction

Today it is impossible to find an area of activities of human beings, which has not be affected by the
computer revolution of the twentieth century. In science, it has resulted in adoption of computer sim-
ulation as the third paradigm of scientific investigations, in addition to theory and experimentation.
Simulation has become the most common tool of scientists and engineers, used for studying perfor-
mance of various complex, dynamic stochastic systems and processes. Due to broad proliferation of
powerful and cheap computers, and their networks, as well as significant achievements in software
technology, there exists easy access to various user-friendly simulation packages in which traditional

∗This work has been supported partially by the Alexander von Humboldt Foundation, Germany

1



1

2

3

4

5

6

7 0

5

10

15

20

25

0

0.01

0.02

0.03

0.04

0.05

se
gm

en
t l

en
gt

h 
[M

AC p
ac

ke
ts

]

jitter

P
ro

ba
bi

lit
y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(a) Results with statistical errors of 25% or
less

0

2

4

6

8 0

5

10

15

20

25

0

0.005

0.01

0.015

0.02

se
gm

en
t l

en
gt

h 
[M

AC p
ac

ke
ts

]

jitter

P
ro

ba
bi

lit
y

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(b) Results with statistical errors of 1% or
less

Figure 1: Example showing influence of statistical errors on the quality of simulation results. The assumed
confidence level=0.9. Evaluation of a Medium Access Control protocol of a mobile communication network
(from [4]).

discrete-event simulation modeling is supported by techniques adopted from artificial intelligence.
This situation has fostered a popular impression that simulation is mainly an exercise in computer
programming.

This is totally misleading opinion, at least in the case of quantitative stochastic simulation
used for quantitative assessment of the performance of dynamic systems. Succeeding in simulation
requires more than the ability to build useful models ... [8], and some claim that modeling of a
simulated system represents only 30-40% of the total effort in most successful simulation projects [11].
A researcher, having designed a valid simulation model, and having verified its simulation program,
faces the problem of appropriate analysis of simulation output data. Stochastic simulation should be
seen as a (simulated) statistical experiment, and analysis of its output data is the necessary condition
for producing credible final results. Otherwise, ... computer runs yield a mass of data but this mass
may turn into a mess if the random nature of such output data is ignored, and then ... instead
of an expensive simulation model, a toss of the coin had better be used [9]. As any other paradigm
of scientific research, the results obtained from simulation experiments should be obtained with an
appropriate (small) error. Otherwise, as an example in Figure 1 shows, they can be misleading, or at
least inconclusive.

Following common statistical practice, when simulation gives θ as an estimate of an unknown
parameter Θ , one should assess the error associated with this result by the probability

Pr(θ − ∆1 ≤ Θ ≤ θ + ∆2) = p,

i.e. by a confidence interval (θ − ∆1 ≤ Θ ≤ θ + ∆2) at a given confidence level p, 0 < p < 1.
Alternatively, one can use the so-called relative statistical error δ, defined as the ratio of ∆ and
θ, where ∆ = (∆1 + ∆2)/2 is the half-width of the confidence interval, at the confidence level p.
Unfortunately, the obvious statistical nature of simulation output data has been neglected to such an
extend that one can talk about a deep credibility crisis of applied stochastic simulation. For example,
in the area of telecommunication networks, a recent survey of almost 2300 scientific publications that
appeared in a selection of prestigious journals and conference proceedings between 1992-1998 has
revealed that, while over 50% of all surveyed publications reported results obtained from simulation



studies, only about 23% of the simulation-based papers could be considered as credible sources of
information, reporting statistically analyzed results [21]. A reason of this situation, but not an excuse,
can be that output data generated during a typical simulation can be strongly autocorrelated, and
analysis of such time series may require quite sophisticated statistical techniques. A possible escape
route from this situation could lead through automation of analysis of simulation output data,
but this requires an appropriate methodology to be developed; see for example [7], [16].

There is a common agreement that the only efficient way of controlling the final errors of sim-
ulation results is to analyze the errors during simulation, at consecutive checkpoints, since ... no
procedure in which the run length is fixed before the simulation begins can be relied upon to produce a
confidence interval that covers the theoretical value ... with the desired probability [10]. The problem
with sequential stochastic simulation (and with any other simulation scenario aimed at obtain-
ing satisfactorily precise results) is that such a simulation of even moderately complex models can
require very long, or even prohibitively long, simulation runs.

In this situation, it is important to reduce the duration of simulation. To achieve this, one could
try to reduce variance of estimators used in analysis of simulation output data. Unfortunately, while
many different Variance Reduction Techniques (VRTs) were proposed (see for example [10]), their ro-
bustness and universality have been questioned in simulation practice. Because of that, an additional
(and frequently the only) way for speeding up stochastic simulation is to execute it concurrently
on multi-processor computers or multiple computers of local networks. Two possible scenarios of
distributed stochastic simulation, are discussed in Section 2. We will show that one of these
scenarios, known as Multiple Replications in Parallel, can be easy applied in stochastic simulation of
any system. In Section 3 we discuss an implementation of this scenario in AKAROA-2, a fully auto-
mated simulation tool for executing of distributed stochastic simulations on clusters of computers in
local area networks, designed at the University of Canterbury in Christchurch, New Zealand,.

2 Two scenarios of distributed stochastic simulation

As mentioned, a very long, or even prohibitively long, simulation time can be required for obtain-
ing the final simulation results with small statistical errors. In this situation, methods proposed for
speeding up stochastic simulation are important in simulation practice. Here we focus on the meth-
ods based on concurrent execution of simulated processes on multi-processor computers or multiple
computers of local networks.

There are two possible approaches in this case. One can try (a) to reduce the complexity of
simulated sets of events by dividing the original (complex) model into a few (simpler) sub-models,
to be simulated on different processors, or/and (b) to speedup the rate of generation of output
data by producing them on a few processors in parallel (using each processor as a engine that
executes a different replication of whole simulation, and submits its output data to a global analyzer,
responsible for statistical analysis of output data being submitted from all simulation engines). The
latter scenario is known as Multiple Replications in Parallelor, shortly, MRIP; see [18]. By
contrast, the former scenario of stochastic simulation is called Single Replication in Parallel, or
SRIP. The two scenarios of distributed stochastic simulation are presented graphically in Figure 2,
having assumed that both are used in the context of sequential simulation, with the same degree of
parallelization.

2.1 Single Replication in Parallel

In this scenario of distributed stochastic simulation one tries to shorten the execution time of a sim-
ulation by reducing the complexity of the simulation model. This is also a powerful technique for
enabling simulation of models that are too large for being simulated by a single processor, because
of memory constraints. By partitioning the model into sub-models, one expects that simulation of
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Figure 2: Distributed stochastic simulation: (a) SRIP scenario using 3 sub-models (M1∪ M2 ∪ M3=M),
(b) MRIP scenario with 3 simulation engines, each executing simulation of the model M.

sub-models on different processors, will be simpler and faster. The main problem with this scenario
is that one can rarely deal with systems that can be partitioned into truly independent subsystems.
In practice, the processors responsible for simulating processes occurring in sub-models occasionally
have to synchronize the evolution of simulated sequences of events. Otherwise, causality errors can
occur. Many different sophisticated methods have been proposed to solve this and related problems.
They have been surveyed, for example in [5], [15], [1], [24], [25], [13] and [14]. In addition to efficiently
managing the execution of large partitioned simulation models, this approach can also offer reason-
able speedup of simulation, provided that a given simulation model is sufficiently decomposable.
Unfortunately, this feature is not frequently observed in practice, thus the efficiency of this scenario
is strongly application-dependent. For example, the maximum speedup achievable when simulating
a simple computer system (a CPU, two I/O devices and N terminals forming a closed queueing
network) cannot be greater than 3.7 [28].

The research on SRIP scenario of distributed/parallel simulation has been continued, but no
portable and automated tool for simulation studies of a wide class of dynamic stochastic systems has
been designed yet.

2.2 Multiple Replications in Parallel

This scenario of distributed stochastic is based on the fact that the duration of quantitative stochastic
simulation directly depends on the time needed for collecting the required sample of output data,
or, in other words, for collecting the number of observations that can guarantee a satisfactorily
low statistical error of the result(s). Thus, such a simulation can be sped up if observations are
“produced” in a parallel, by multiple processors running statistically independent replications of the
same simulation. One can view such processors as simulation engines working in a team and producing
one common sample of output data (or samples of output data, if more than one performance measure
of the simulated system are considered). Observations generated by different simulation engines, but
representing values of the same performance measure, are submitted to a global analyzer that is
responsible for their statistical analysis. Different global analyzers would be responsible for statistical
analysis of different performance measures.

Having accepting arguments pointing at sequential stochastic simulation as the only effective way
of controlling the final errors of simulation results, one should analyze the current statistical error
of results at consecutive checkpoints. The analysis of each performance measure should be continued
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Figure 3: Speedup of distributed stochastic simulation in MRIP scenario. f = the (average) relative length
of non-parallelizable stage of simulation

as long as the statistical error of its estimate does not drop below an assumed acceptable level. All
simulation engines should operate until the analyses of all performance measures are finished. At
that instant of time all simulation engines are stopped and global analyzers produce the final results.

Distributed simulation in MRIP scenario can be carried on with any simulation model (providing
that the required sample of output data is sufficiently large to justify introduction of multiple simu-
lation engines), either on multiprocessor computers or multicomputer networks. When appropriately
implemented, it offers speedup that is governed by a Truncated Amdahl Law [22], depicted in Figure
3.

When P processors are used as simulation engines, then the (average) speedup1 is measured by
the ratio of the (average) run-length of simulation executed on a single processor and the (average)
run-length of simulation on one of P participating processors, with the run-lengths measured by the
number of observations needed for stopping the simulation with the required level of statistical error
(at a given confidence level).

The Truncated Amdahl Law says that, if the number of simulation engines does not exceeds a
limit, the average speedup under MRIP can be equalled to the number of processors used; see the
curve for f = 0 in Figure 3. This happens, for example, in the case of the so-called finite-time
horizon simulation, used for assessing performance of systems over a fixed period of time [20], or
in regenerative steady-state simulation, in which data are collected over consecutive regenerative
cycles [16]. In the case of steady-state simulation based on other-than-regenerative methods of data
analysis, one has to deal with a non-productive (from the point of view of steady-state analysis)
phase of simulation, known as the initial transient (or warm-up) phase. Output data collected during
this phase do not characterize steady-state behavior of the analyzed system and because of that they
have to be discarded. Depending on the relative length of the initial transient phase2, the average
speedup becomes less or more sub-linear; see curves for f > 0 in Figure 3.

In all cases one can find the maximum number of simulation engines Pmax that guarantees the
maximum speedup for a given value of f . This happens when P becomes equal to the number of
the checkpoints that have to be “visited”by the global analyzer before the simulation stops with
sufficiently accurate results. Note that when this occurs, each simulation engine is able to reach its
first checkpoint only. Launching MRIP on more than Pmax processors does not increase the speedup.
It will only produce results with smaller errors than required. All curves shown in Figure 3 were
obtained assuming that a given simulation needs to collect data from (on average) 1000 checkpoints

1In stochastic simulation the length of each replication is random, so one can talk about average speedup only.
2This is defined as the ratio of the (average) length of the initial transient phase and the (average) total number of

observations recorded before the simulation stops



before it can be stopped.
MRIP appears to be very efficient scenario for speeding up both single simulation experiments

and a series of simulation experiments, providing that the number of available processors is much
larger than the number of experiments to be carried on. There would be no effective speedup in the
case of, say, 10 simulation experiments, if one has an access to 10 processors only. Applying ordinary
scenario (of non-distributed) simulation, i.e. launching simultaneously 10 different simulations on 10
computers, each simulation on a different computer, one could expect to have access to all results
after, say, T hours. In the MRIP case, the 10 simulations could be done in a sequel, each time
on 10 processors. Thus, while each result could be available already after T/10 hours, one would
still need T hours to have an access to all results. The current technological changes in computer
industry, resulted in proliferation of cheap but powerful computers, and unprecedented growth of the
number of large local computer networks, clearly indicate that the attractiveness of MRIP scenario
of distributed simulation will grow as the technology of network computing advances.

Probably the most attractive feature of MRIP is that this scenario of distributed simulation can
be fully automated. An example of such a fully automated tool for launching and controlling the
run-length of sequential stochastic simulation in MRIP scenario is presented in the next Section.

3 Automated MRIP in AKAROA-2

The first implementations of the MRIP scenario in simulation packages were independently reported
by research teams from Purdue University in USA and the University of Canterbury in New Zealand,
which designed EcliPse ( [27], [23]) and AKAROA ( [17], [29]), respectively.

AKAROA-2 is the latest version of a fully automated simulation tool designed at the University
of Canterbury for running distributed stochastic simulations in the MRIP scenario in local area net-
works. The package has been designed mainly for use with simulation programs written in C or C++,
but can be easily adapted to work with other languages and systems. It accepts an ordinary (sequen-
tial) simulation program, and automatically launches the number of simulation engines declared by
a given user; see Figure 4. Possibility of running existing simulation programs in MRIP scenario was
one of the main design objectives. Any simulation program which produces a stream of observations
and is written in C or C++, or can be linked with a C++ library, can be converted to run under
AKAROA-2 by adding to the existing code as little as one procedure call per analyzed performance
measure. Such a call should be added at the point where the program generates an observation [2].

AKAROA. 2

multiple

simulation

engines

sequential 
simulation 
model

Figure 4: AKAROA-2 as an automatic launcher of multiple simulation engines

Depending on the declared type of stochastic simulation (finite-time horizon or steady-state simu-
lation), appropriate sequence of checkpoints will be automatically followed up, at which a statistically
correct method of analysis of simulation output data will be automatically applied. The simulation
will be automatically stopped when all results achieve an acceptably small level of relative statistical
error, at a given confidence level, both declared by the user before the simulation begins.

Newer version of AKAROA-2 is equipped in a graphical user interface. Figure 5 shows this graph-
ical user interface when it informs about a simulation in progress. The window (in its upper left
corner) shows the name of the simulation program (here: mm1 0.95), followed by the required level of
the relative error (or precision) of the results (here: 0.05), the declared confidence level (here: 0.95),
and the current status of the simulation (“running”). A table below informs about the status of three



Figure 5: Graphical user interface of AKAROA-2 showing a simulation in progress

simulation engines used in this example. This is followed by a dynamic display of the current relative
error of the results, and a table with the current values of intermediate results.

In the upper right corner of the window one can see two buttons. One, called “Add Engines”,
allows to further speed up the simulation in progress if it has lasted already too long and the number
of participating processors can be increased. The other button can be used to stop the simulation
before its stopping condition is satisfied. More details on the user interface of AKAROA-2 can be
found in [3].

AKAROA-2 offers fully automated analysis of mean values, both in the case of finite-time horizon
and steady-state simulation. The methods of analysis it uses have been selected on the basis of
exhaustive analysis of their quality, following the methodology presented in [19]. This research led to
adoption of SA.HW.MRIP (the method of Spectral Analysis in its version proposed by Heilderberger
and Welch [6] and adopted to MRIP [18]) as the method of automated sequential analysis of steady-
state mean values in the MRIP scenario. The length of the initial transient phase is also automatically
detected following a sequential implementation of one of the tests proposed by Schruben [26], for
detecting (non)stationarity of time series.

4 Final comments

MRIP appears to be very attractive scenario of distributed stochastic simulation. It can be applied
to any simulation model, and can offer speedup equal to the number of simulation engines employed.
Its important additional feature is that it can be fully automated, as it has been done in AKAROA-2.

While wider adoption of SRIP in simulation practice is hindered by the existence of causality
errors and difficulty with automation of procedures dealing with (or preventing occurrence of) these
errors, the main obstacles in wider usage of MRIP have statistical nature. This is particularly true in
the case of steady-state simulation. Practically, only sequential methods of analysis of mean values
and quantiles have been proposed (mostly for simulations executed on single processors). While there
are already some results available on the quality of selected methods of mean value analysis [19], very
little is known on the quality of the methods proposed for quantiles [12]. Many other important issues,
such as, for example, distributed estimation of results from sequential simulation of rare events, have
basically been unexplored yet.

Further progress in enhancing functionality of such simulation packages as AKAROA-2 cannot be
achieved before these and related statistical problems are solved.
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