
INTEGRATING MODELLING AND DATA ANALYSIS IN TEACHING DISCRETE EVENT SIMULATION

Krysztof Pawlikowski
Wolfgang Kreutzer

 Department of Computer Science
 University of Canterbury
 Christchurch, New Zealand.

ABSTRACT

The growing popularity of stochastic discrete event
simulation in areas such as telecommunication, combined
with much marketing hype about ease of use, has coaxed
some practitioners into a misguided belief that choosing
prefabricated components from libraries and configuring
them into a model by pointing and clicking is all that is
needed. While neglect of statistical aspects of simulation
has already led to some highly problematic published
results, this erroneous assumption must also be guarded
against in university teaching. This paper therefore argues
for the importance of teaching those issues that critically
affect the analysis and credibility of a simulation's results
alongside those methods and tools targeted at the needs of
model design and construction.

1 INTRODUCTION

Using stochastic discrete event simulation successfully
requires a valid conceptual model, based on appropriate
assumptions. Figure 1 shows the usual steps in a
simulation modelling project. The first 4 of these phases
(i.e. system identification, model design, model
implementation, program verification) have been well
researched and documented. Many good textbooks exist,
many commercial tools offer convenient programming
environments, and the relevant methodologies are often
taught well. In order to serve its purpose, however, a model
must also be validated and used in a "valid experiment",
which requires the application of suitable sources of
“randomness” as well as appropriate means of analysing its
output data. Both issues are of central importance to a
model's credibility and need to be motivated and taught
well. Appropriate motivation can, for example, be provided
by showing the ease with which inadequate analysis of a
simulation's results can lead to erroneous conclusions.
Such motivation is particularly important if the relevant
techniques for overcoming these problems are conceived
as unglamorous and technically difficult. Appropriate
choice of convincing examples as

well as effective presentation (e.g. by skillful use of
visualization and animation of time series data) can be
used to overcome this perception.

Figure 1: A Model of Model Construction

 Our own work in this context has centered on teaching
stochastic simulation of telecommunications networks, but
we believe that these issues have wider applicability. Since
any stochastic computer simulation must be regarded as a
(simulated) statistical experiment, the application of
statistical methods of analysis is mandatory.

2 THE GENERATION OF RANDOM
BEHAVIOUR

It is a generally accepted practice to use algorithmic
generators of pseudo-random uniformly distributed
numbers (PRNG) to reflect randomness in stochastic

simulation. The theoretical foundations of PRNGs are well
established (see, for example Knuth 1998) and over the last
50 years many different PRNGs that pass rigorous
theoretical tests have been proposed.
 Practically all of these are linear congruential PRNGs
(LC-PRNGs) and generate periodic sequences of numbers.
The most popular belong to a class of recursive algorithms
in integer modulo M arithmetic (Entacher 1998). In today's
world of 32-bit computers multiplicative LC-PRNGs with
modulus 231-1 have received special attention and,
following exhaustive analysis, about 20 of them can be
recommended as acceptable sources for modeling pseudo-
randomness (see Fishman and Moore 1986, L'Ecuyer
1990, L'Ecuyer 1991, Park 1988). These are the generators
that have been used, for example, in GPSS (version H and
PC), SIMSCRIPT II.5, SIMAN and SLAM II (Law and
Kelton 1991). As a result one could claim that the search
for a good PRNG has become unproblematic.
 Unfortunately, this is only partially true. Any
conscientious users of PRNGs should be aware that they
may face potentially serious problems when using PRNGs
in real-life applications. One problem is that recent
advances in computing technology have made PRNGs with
cycles in the order of 231 effectively obsolete for all but
very short simulation runs. Today a standard workstation
operating at a speed of a few hundred MHZ can generate
the whole cycle of a mod(231-1) PRNG in a few minutes.
And 1 GHz PCs have just been announced (Lewis 2000).
When planning a simulation with a runtime of more than a
few minutes of CPU time one obviously needs PRNGs of
much longer cycles than would have been acceptable only
a few years ago. For example, simulations of modern
telecommunication networks, fed by traffic streams
modeled by strongly auto-correlated processes, need very
long runtimes and long streams of output data in order to
report results with an acceptably small statistical error.
 The use of PRNGs with adequately long cycles is also
strongly advocated by recently established theoretical
restrictions on the number of pseudo-random numbers
from the same PRNG to be used in a single simulation. For
example, if one is concerned with two dimensional
uniformity of pseudo-random numbers, then, in order to
maintain pseudo-randomness of pairs of numbers
generated by a PRNG with cycle length L, one should not
use more than 8 L numbers from a single PRNG during
a single simulation (L'Ecuyer 1998, L'Ecuyer 1999b).
Fortunately, recent advances have led to the discovery of
generators that should be adequate for simulations
demanding even very long runtimes for the foreseeable
future. For example, a number of Multiple Recursive LC-
PRNGs, and Combined Multiple Recursive LC-PRNGs,
with cycles between 2185 and 2377, have been reported by
L'Ecuyer (1999), together with portable implementations.
Their pseudo-randomness has been established as
satisfactory in up to 32 dimensions.

 Recently an even more remarkable discovery has been
reported. Investigations into a class of Generalized
Feedback Shift Register PRNGs (GFSFR-PRNGs) have
resulted in the discovery of a twisted GFSFR-PRNG,
known as the Mersenne Twister, with an extremely long
cycle of 219937-1 and good pseudo randomness for 32-bit
accuracy in up to 623 dimensions (Matsumoto and
Nishimura 1998). Matsumoto and Nishimura's 1998 paper
also contains a portable implementation of this generator
for 32-bit machines, written in C. This is claimed to be
faster than a standard PRNG used in the ANSI C rand()
function. See www.math.keio.ac.jp/matumoto/emt.html for
the latest information regarding the Mersenne Twister.
 There are therefore PRNGs of acceptable quality which
can serve as practical sources of randomness in stochastic
simulations, and their use must be taught. Unfortunately
this does not mean that all problems related with PRNGs
have been solved. For example, one should be very
cautious when using uniformly distributed pseudo-random
numbers from a single generator in distributed and/or
parallel simulations. The reasons for this lie in potential
correlations between disjoint sub-streams of consecutive
numbers (Entacher 1998, Hellekalek 1998). As A.
Compagner (1995), of the Technical University of Delft
(Netherlands) put it : ".. results of stochastic simulation are
misleading when correlations hidden in the random
numbers and in the simulated system interfere
constructively ..."
 Even in the case of traditional, non-distributed and non-
parallel simulation on single processors one must be
careful. Uncontrolled distribution of various computer
programs has resulted in the uncontrolled proliferation of
PRNGs with unsatisfactory or unknown quality. The
advice by D. E. Knuth (1998) is even more relevant today:
".. replace the random generators by good ones. Try to
avoid being shocked at what you find ...''. Jain (1991)
offers a longer list of useful practical guidelines on how to
use or not use PRNGs in simulation studies; together with
the advice that ".. it is better to use an established
generator that has bee ntested thoroughly than to invent a
new one''.

3 TEACHING SEQUENTIAL STOCHASTIC
SIMULATION

Even where good random generators are used for a model's
implementation one must continually guard against any
misleading assumption that simulation has now simply
become an exercise in computer programming. Successful
use of quantitative stochastic simulation for quantitative
assessment of dynamic system performance requires more
than just the the ability to build useful models. Many
respected researchers report that modeling of a simulated
system represents only 30-40% of the total effort in most
successful simulation projects (Law and Kelton 1991).
After a valid simulation model has been designed and a

corresponding program has been implemented and verified
a researcher still faces the problem of conducting
appropriate output analysis. While sadly poorly supported
by most commercial tools, this is another skill that novices
must be taught. Stochastic simulation should be seen as a
(simulated) statistical experiment and analysis of its output
data is the necessary condition for any credible final
results. If the random nature of such output data is ignored,
then ".. instead of an expensive simulation model, a toss of
the coin had better be used" (Kleinjen 1979). As any other
paradigm of scientific research the results of a simulation
experiment should be obtained with an appropriately small
error. Otherwise they can be misleading or at the least
inconclusive.

(a) results with statistical errors of 25% or less

(b) results with statistical errors of 1% or less

Figure 2: Influence of statistical errors on the quality of
simulation results.

Figure 2 clearly shows this in case of a model for a
Medium Access Protocol of a mobile communication
network (Fitzek et al. 2000).

 Unfortunately the obvious statistical nature of simulation
output data has been neglected to such an extend that one
can justifiably talk of a deep credibility crisis in applied
stochastic simulation. For example, in the area of
telecommunication networks, a recent survey of almost
2300 scientific publications that appeared in a selection of
prestigious journals and conference proceedings between
1992-1998 reveals that, while over 50% of all surveyed
publications reported results obtained from simulation
studies, only about 23% of the simulation-based papers
could be considered as credible sources of information
which reported statistically analyzed results (Pawlikowski
1999).
One reason, but not an excuse, for this alarming state of
affairs may be that the output generated by a typical
simulation run can be strongly auto-correlated and the
analysis of such time series may require sophisticated
statistical techniques. A possible escape from this
situation, which can also aid teaching, could employ
automated analyses; for which, however, suitable tools
must be developed (see, for example Heidelberger and
Welch 1983, Pawlikowski 1990).
 Statistical errors in simulation results are commonly
measured by a confidence interval expected to contain an
unknown value. The probability of this to happen is known
as the confidence level. In any correctly implemented
stochastic simulation the width of this interval will tend to
shrink with the number of data points we collect. Two
different scenarios exist. The simpler one enters the length
of a simulation experiment as an input parameter to the
model. Although this method is often defended by arguing
that, for “well behaved” models, the output's credibility
should improve the longer we run the model, the
magnitude of the resulting statistical error is ultimately a
matter of luck. While it continues to be a popular “default”
it is no longer an acceptable method to teach: "... no
procedure in which the run length is fixed before the
simulation begins can be relied upon to produce a
confidence interval that covers the the theoretical value
with the desired probability". (Law and Kelton 1991).
 Instead modern methodology offers sequential simulation
as an alternative which gives us control over the tradeoff
between computational effort and the expected quality of
the data we wish to produce. Here a simulation unfolds
through a sequence of consecutive checkpoints at which
the accuracy of estimates, conveniently measured by the
relative statistical error, is assessed. The simulation is
stopped at the checkpoint at which the relative error of
estimates falls below an acceptable threshold. This method
should obviously be the one to be taught. Similar reasoning
applies to methods which allow us to approximate a
model's behavior in steady state. These require more
elaborate statistical methods (Pawlikowski 1990) and
suitable motivation and attractive visualizations are
therefore of great importance for teaching them well.

 The problem with sequential stochastic simulation and
any other simulation scenario aimed at obtaining
satisfactorily precise results is that modeling even
moderately complex models can require very long, or even
prohibitively long, simulation runs. To reduce run lengths
one could try to reduce the variance of estimators used for
the analysis of simulation output. Unfortunately, while
many different Variance Reduction Techniques (VRTs)
have been proposed (see, for example, Law and Kelton
1991) their robustness and universality have been
questioned in practice. An alternative and frequently the
only means for shortening run lengths of stochastic
simulations is to execute models concurrently, using multi-
processor computers or computers linked in a local
network. The methodology needed for executing such
parallel simulations should also be an important ingredient
for a simulation curriculum. One possible scenario, known
as Multiple Replications in Parallel (MRIP), can easy be
applied and has been implemented in the AKAROA-2
modeling tool developed at the University of Canterbury
(Ewing et al. 1999).

3. AKAROA-2: AN AUTOMATED SIMULATION
 TOOL

AKAROA-2 is the latest version of a fully automated
simulation tool designed at the University of Canterbury. It
is targeted at running distributed stochastic simulations in
the MRIP scenario over a local area network. The package
has been designed mainly for use with simulation programs
written in C or C++, but it can easily be adapted to work
with other languages and systems; e.g. a Java port has been
built at the University of Hamburg. Akaroa has been used
to aid our teaching of simulation methodology for a
number of years.
 The capability to run existing simulation programs in an
MRIP scenario was one of Akaroa-2's main design goals. It
accepts an ordinary sequential simulation program and
automatically launches the number of simulation engines
requested by a given user. Any simulation program which
produces a stream of observations and is written in C or
C++, or which can be linked with a C++ library, can be
converted to run under AKAROA-2. This requires as little
as a single procedure call per performance measure to be
added to the existing code. Depending on the requested
type of stochastic simulation (finite-time horizon or steady-
state simulation) appropriate sequences of checkpoints will
automatically be generated and a statistically correct
method of output data analysis will automatically be
applied. The simulation will then be stopped when all
results achieve a specified level of relative statistical error;
at a given level of confidence . Both of these measures will
be specified by the user before the start of a simulation run.
To aid its effectiveness in teaching a newer version of
AKAROA-2 has been equipped with a graphical user
interface (GUI).

Figure 3: How Akaroa-2 shows the status of a model in
execution

 Figure 3 shows how this interface informs a user about a
simulation in progress. The window shows the name of the
simulation program (here: mm1 0.95 in its upper left
corner), followed by the required level of relative error (or
precision) of the results (here: 0.05). The requested
confidence level (here: 0.95) and current status of the
simulation ("running'') is also shown. A table reports the
status of the three simulation engines used in this example,
followed by a dynamic display of the current relative
error and another table displaying the current values of
intermediate results. In the upper-right-hand-corner of the
window we see two buttons. One is called "Add Engines''
and allows a user to accelerate a simulation by increasing
the number of participating processors. The other button
can be used to stop a simulation before its stopping
condition has been reached. More details on AKAROA-2's
user interface can be found in Ewing et al (1999).
 AKAROA-2 offers fully automated analysis of mean
values, both in the case of finite-time horizon and steady-
state simulation. The methods of analysis used have been
based on an exhaustive survey of their quality, following
the methodology presented in Pawlikowski et al. (1998).
This research led to adoption of SA.HW.MRIP (a method
of Spectral Analysis using the version proposed by
Heildelberger and Welch (1981)) and its adjustment to
MRIP (Pawlikowski et al. 1994) as the method of
automated sequential analysis of steady-state mean values
in the MRIP scenario. The length of the initial transient
phase is also automatically detected following a sequential
implementation of one of the tests proposed by Schruben
(1982) for detecting the (non)stationarity of time series.

3 SUMMARY

While there are some notable exceptions (e.g. Simscript
II.5, QNAP2, Prophesy ..) sequential stochastic simulation
techniques have unfortunately not been at all well
supported by vendors of commercial simulation tools,
which often rely on the persuasive power of sophisticated
graphical presentation and animations instead. While the
resulting lack of convenient tools to support teaching these
methods poses a challenge, it also offers much opportunity
for research.
 At the University of Canterbury we have developed a
number of teaching tools for this purpose,; e.g. the Akaroa
family of simulation engines. These tools have been used
for a number of years in both undergraduate and graduate
performance modelling courses - particularly targeted at
the data communication domain. Due to constraints caused
by our institution's degree structures no statistics courses
are required prerequisites, but they are strongly
recommended as preparation. Our experience with those
students who do have a suitable statistical background has
been very good. In course evaluations the performance
modelling section is considered worthwhile, interesting
and challenging. Students without statistical preparation
will have to struggle. At the end of the course, however,
all participants are well aware of the context in which
quantitative stochastic simulations can and should be used,
and are able to critically assess the credibility of
experimental results. This would not be the case if only
model construction and implementation had been taught.
While the Akoaroa modelling tools ease application and
help to motivate students, they are not essential. What is
essential is that a simulation's role as a simulated
experiment is stressed and suitable tools for modelling
random behaviour and experimental analysis are taught.
 In summary we therefore again want to stress the
importance of training computer scientists,
telecommunication engineers and production planners in
how to asses and minimise the errors inevitably associated
with conclusions from models which use stochastic
simulation techniques. This should be part of any
educational program which teaches the use of simulation
techniques, regardless of where it is situated or how widely
or narrowly it casts its net. Unfortunately existing courses
and programs do not always observe this requirement.
There is a worrying trend of ignoring critical issues related
to statistical credibility, which is also reflected in the
relevant literature. A recent survey of publications shows
this deficiency clearly (Pawlikowski et al 2000). Let us try
to improve this state of affairs by offering our students a
solid foundations for all phases of simulation modeling and
experimentation.

REFERENCES

Compagner, A. 1995. Operational Conditions for Random-
Number Generation. Phys. Review: 5634-5645.

Entacher, K. 1998. Bad Sequences of Well-Known Linear
Congruential Pseudorandom Generators. ACM Trans. on
Modeling and Computer Simulation: 61-70.

Ewing, G., K. Pawlikowski and D. McNickle 1999.
AKAROA.2: Exploiting Network Computing by
Distributing Stochastic Simulation'. Proc. 13th European
Simulation Multiconference, ESM'99. Warsaw: 175-181.

Fitzek, F. H. P., E. Mota, E. Ewers, K. Pawlikowski and A.
Wolisz 2000. An Efficient Approach for Speeding Up
Simulation of Wireless Networks. Proc. of the Western
Multiconferece. on Computer Simulation, WMSC'2000.
San Diego: in press.

Fishman, G. S., and L. R. Moore III 1986. An Exhaustive
Analysis of Multiplicative Congruential Random Number
Generators with Modulus M = 231-1. SIAM J. Sci. Stat.
Comput: 24-45.

Heildelberger, P., and P. D. Welch 1981. A Spectral
Method for Confidence Interval Generation and Run
Length Control in Simulations. Communications of the
ACM: 233-245.

Hellekalek, P. 1998. Don't Trust Parallel Monte Carlo!
Proc. of the 12th Workshop on Parallel and Distributed
Simulation, PADS'98. Banff: 82-89.

Jain, R. 1991. The Art of Computer Systems Performance
Analysis. Wiley.

Kleijnen, J. P. C. 1979. The Role of Statistical
Methodology in Simulation. In: Methodology in Systems
Modelling and Simulation. B.P.Zeigler et al., (eds.).
North-Holland

Knuth, D. E. 1998. The Art of Programming, Volume 2:
Seminumerical Algorithms (3rd edition). Addison-Wesley

Law, A. M. and W. D. Kelton 1991. Simulation Modelling
and Analysis. McGraw-Hill

Levins, P.H. 2000. With 2 Chips, the Gigahertz Decade
Begins. New York Times, March 9.

L'Ecuyer, P. 1990. Random Numbers for Simulation.
Communications of the ACM: 85-97

L'Ecuyer, P. 1998. Uniform Random Number Generators.
Proc. 1998 Winter Simulation Conf.. WSC'98. Washington:
97-104.

L'Ecuyer, P. 1999. Good Parameters and Implementations
for Combined Multiple Recursive Random Number
Generators". Operations Research: 159-164

L'Ecuyer, P. 1999b. Tables of Linear Congruential
Generators of Different Sizes and Good Lattice Structure'.
Mathematics and Computation: 249-260.

Matsumoto, M. and T. Nishimura. 1998. Mersenne
Twister: a 623-Dimensionally Equi-distributed Uniform
Pseudo-Random Number Generator". ACM Trans. on
Modeling and Computer Simulation: 3-30.

Park, S. K., and K. W. Miller. 1988. Random Number
Generators: Good Ones are Hard to Find. Comm. of the
ACM: 1192-1201.

Pawlikowski, K. 1990. Steady-State Simulation of
Queueing Processes: a
 Survey of Problems and Solutions. ACM Computing
Surveys:123-170.

Pawlikowski, K., V. Yau and D. McNickle 1994.
Distributed Stochastic Discrete-Event Simulation in
Parallel Time Streams. Proc. of the 1994 Winter
Simulation Conference, WSC'94. Orlando: 723-730.

Pawlikowski, K., D. McNickle and G. Ewing 1998.
Coverage of Confidence Intervals in Steady-State
Simulation. Journal of Simulation Practice and Theory:
255-267.

Pawlikowski, K. 1999. Simulation Studies of
Telecommunication Networks and Their Credibility. Proc.
13th European Simulation Multiconference, ESM'99
Warsaw: 349-355.

Pawlikowski, K., Jeong, J. and Lee, R. 2000. On
Credibility of Simulation Studies of Telecommunications
Networks. Paper submitted to IEEE Communications
(April 2000)

Schruben, L. W. 1982. Detecting Initialization Bias in
Simulation Output'. Operations Research: 569-590.

AUTHOR BIOGRAPHIES

KRYSZTOF PAWLIKOWSKI is an Associate Professor
(Reader) in Computer Science at the University of
Canterbury, Christchurch, New Zealand. He received his
PhD in Computer Engineering from the Technical
University of Gdansk, Poland. The author of over 90

research papers and four books; his research interests
include stochastic simulation, cluster processing,
performance modeling of ATM, optical and wireless
telecommunication networks, and teletraffic modeling.
Professor Pawlikowski is a Senior member of the IEEE.
His email and web addresses are
krys@cosc.canterbury.ac.nz and
www.cosc.canterbury.ac.nz/~krys .

WOLFGANG KREUTZER is an Associate Professor of
Computer Science at the University of Canterbury in New
Zealand. His current research centers on software design,
simulation modeling tools, visual programming languages
and computer science education. Professor Kreutzer's
email and web addresses are
wolfgang@cosc.canterbury.ac.nz and
www.cosc.canterbury.ac.nz/~wolfgang.

