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Abstract

Stochastic discrete-event simulation has become one of the most-used tools for

performance evaluation in science and engineering. But no innovation can replace the

responsibility of simulators for obtaining credible results from their simulation experiments.

In this paper we address the problem of the statistical correctness of simulation output data

analysis, in the context of sequential steady-state stochastic simulation, conducted for

studying long run behaviour of stable systems. Such simulations are stopped as soon as the

relative precision of estimates, defined as the relative half-width of confidence intervals at a

specified confidence level,  reaches the required level. We formulate basic rules for the proper

experimental analysis of the coverage of steady-state interval estimators. Our main argument

is that such an analysis should be done sequentially. The numerical results of our  coverage

analysis of the method of Non-overlapping Batch Means  and Spectral Analysis are presented,

and compared with those obtained by the traditional, non-sequential approach. Two scenarios

for stochastic simulation are considered: traditional sequential simulation on a single

processor, and fast concurrent simulation based on Multiple Replications in Parallel (MRIP),

with multiple processors cooperating in the production of output data.

Keywords:  stochastic simulation,  simulation output analysis, confidence intervals,

observed coverage
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1. Introduction

There are many aspects that have to be taken into account in stochastic discrete-event

simulation to produce credible results. They include the necessity for verification of the simu-

lation model (does a given simulation model perform as intended?) and for validation (is a

given simulation model an acceptable model of the real-world system under study?), selection

of statistically correct generator(s) of pseudo-random numbers and finally, statistically correct

analysis of output data collected during the simulation.  In this paper we address the last

problem, in the context of estimating means in sequential steady-state stochastic simulation,

i.e., simulation conducted for studying mean system behaviour over a long period of time.

Sequential analysis of simulation output is generally accepted as the only efficient way for

ensuring representativeness of samples of collected observations; see for example [11, 18,

19]. In this scenario, a simulation experiment is stopped as soon as the relative precision of

estimates, defined as the relative width of confidence intervals at a specified confidence level,

reaches the required size. The main analytical problems of sequential estimation of the width

of steady-state confidence intervals are discussed in for example [21]. They are caused by

strong correlations between events in typical simulated processes, as well as by the presence

of initial non-stationary periods.

At least a dozen methods have been proposed for analysing confidence intervals of

correlated time-series of observations collected during simulation experiments. A survey of

such methods until 1990 can be found in [21]. Newer proposals can be found in for example

[3, 7, 12]. So far only a few implementations of these methods in an automated sequential

simulation framework have been reported (see for example [3, 11, 22, 24, 29]). The problem

is that no reliable comparative studies of these methods have been reported yet, and it is

difficult to find a good method for a specific range of applications. All methods involve

different approximations, and their quality should be experimentally assessed by studying the

properties of the final confidence intervals they generate. A good method should produce

narrow and stable confidence intervals, which should of course yield a probability of such an

interval containing the true value of the estimated performance measure that does not differ

from the assumed confidence level. Theoretical studies of various interval estimators up to

1990 are surveyed in [21]. Newer results can be found, for example, in [6] and [13]. Most of

them relate to simulation experiments run on single processors, and very little is known about

the quality of methods that could be used in fast concurrent sequential simulation based on

Multiple Replications in Parallel (MRIP), where multiple processors cooperate in the

production of data for the global output samples [22 - 24].

The theoretical studies of confidence intervals can reveal general conditions which have to

be satisfied to secure correct coverage, but correctness of any practical implementation of a

specific method also has to be tested experimentally. Unfortunately, no appropriate
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methodology of experimental coverage analysis had been proposed, and this prompted us to

formulate such a methodology in Section 2 of this paper. We apply this methodology to

compare the quality of two selected methods of (automated) output data analysis in sequential

steady-state simulation: the classical method of (non-overlapping) Batch Means, and SA/HW

(the method of Spectral Analysis in its version proposed by Heidelberger and Welch [10]),

both in the case of sequential simulations on single processors and in sequential simulations

on multiple processors in the MRIP scenario. The main results of these analyses are presented

in Section 3.  Further directions of research, and related practical problems, are indicated in

the Conclusions.

2.  Experimental analysis  of  coverage

In any performance evaluation study of dynamic systems, by means of stochastic discrete-

event simulation, the final estimates should be determined together with their statistical

errors, which are usually measured by the half-width of the final confidence intervals.

Restricting our attention to estimators of means, let us assume that we estimate the theoretical

mean µx = ΕX by

X
–

(n)  = 
 1
n ∑

i=1

n
 xi  (1)

where x1, x2, ..., xn are observations collected during simulation. Then, one should also

determine the confidence interval (c.i.) for µx,  at a given confidence level 1-α, 0 < α < 1

P ( X
–

(n)  - ∆  ≤ µx ≤ X
–

(n)  + ∆ ) = 1-α           (2)

where ∆ is the half-width of the c.i., typically estimated by ̂∆ = tκ,1-α/2 σ̂ [ X(n) ] where

σ̂ 2[ X(n) ] is an estimator of the variance of X
–

(n) with κ degrees of freedom and tκ,1-α/2 is the

(1-α/2) quantile of the Student t-distribution.

Problems associated with estimating σ2[ X(n) ] in steady-state simulations are discussed for

example in [21]. Various estimators of this variance have been proposed, which has created

the need for an assessment of the quality of these estimators and of specific methods of

running the simulation and pre-processing simulation output data.

In  an  ideal case the final c.i. would contain µx with the probability 1-α, or equivalently, if

an experiment were repeated many times, one would expect to have µx in about (1-α)100% of

the final confidence intervals. Coverage of confidence intervals , c, is defined as the relative

frequency with which the final confidence interval (X–(n) - ∆̂  , X(n)  + ∆̂ ) contains the true

value µx. While some interesting results have been achieved in theoretical studies of coverage

(see for example [5, 11, 13, 26, 27]), experimental analysis of coverage is still required for
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assessing the quality of practical implementations of methods used for determining

confidence intervals is steady-state simulation. Of course, such analysis is limited to

analytically tractable systems, since the value of µx has to be known.

As for any other point estimate, the coverage can be determined together with its c.i. :

(c - z1−α/2
c(1-c)

nc
  ,  c + z1−α/2

c(1-c)
nc

  )           

(3)

where c is the coverage,  z1−α/2  is the (1-α/2) quantile of the standard normal distribution and

 nc is the (suitably large) number of replicated coverage experiments. This is based on the fact

that, while the number of confidence intervals containing the true value µx has a binomial

distribution with mean ncµc, c c cc− µ( ) −( )1  tends to the standard normal distribution as nc

→∞; see for example [20].

An estimator of σ̂ 2[ X(n) ] used for determining the c.i. of µx is considered as valid, ie.

producing valid 100(1-α)% confidence intervals of µx, if the upper bound of the confidence

interval of the coverage c in Eq.(3) equals at least (1-α); see [25]. Results of experimental

coverage analysis have been reported in many publications but, unfortunately, the statistical

validity of many of these results can be questioned. The coverage was often not analysed on

the basis of a  large number of replications. We have found only four studies [8, 9, 12, 13]

where at least a thousand replications were used. Unfortunately in many reported cases as few

as 50-200 replications were used (see for example [1, 11, 14-17, 25, 26, 28]) which obviously

puts in question their statistical representativeness. Inevitably, in these cases, the estimates of

coverage were based on only a few confidence intervals which did not cover µx !

Additionally, while sequential simulation is generally regarded as the only way of

producing results with the required precision  since "... no procedure in which the run length

is fixed before the simulation begins  can be relied upon to produce a c.i. that covers the true

steady-state mean with the desired probability level" ([7, 17]), even the original advocates of

sequential simulation have applied non-sequential (fixed-sample size) approaches in their

own simulation studies of coverage. Certainly, if one accepts the arguments for a sequential

approach as the only practical way, then meta-simulation experiments, such as those for

coverage analysis, should also be run sequentially !

Sequential coverage analysis does raise the problem that some of the simulation

experiments may stop after an abnormally short time, because, by chance, the stopping

criterion has been temporarily satisfied. While of course this occurs in actual simulation

experiments here it has the effect of introducing considerable “noise” into our estimates of

coverage, and making them difficult to compare with results from fixed sample size studies.

Also we believe that, in practice, a careful analyst might well eliminate such obviously flawed
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runs. Thus we decided to eliminate such runs to avoid obscuring the statistical properties of

interval estimators.

Taking these facts into account, we adopt the following rules in coverage analysis of

sequential steady-state interval estimators :

R1. Coverage should be analysed sequentially, ie. analysis of coverage should be stopped 

when the relative precision (the relative half-width of c.i.) of the estimated coverage 

satisfies a specified level.

R2. An estimate of coverage has to be calculated from a representative sample of data, so 

the coverage analysis can start only after a minimum number of “bad” confidence 

intervals have been recorded.

R3. Results from simulation runs that are clearly too short should not be taken into 

account.

Details of our implementation of these rules of sequential coverage analysis  for studying

quality of the final steady- state interval estimators of mean values are discussed in the next

section.

 3.  Numerical results

In this Section we consider two sequential methods of steady-state analysis of means and

their confidence intervals: the method of Non-overlapping Batch Means (BM), and SA/HW

(the method of Spectral Analysis in its version proposed by Heidelberger and Welch [10]).

Our implementations of these methods on single processors followed exactly the procedures

specified in [21], including the  procedure described there for detecting the length of the

initial transient period. For parallel simulations using the MRIP scenario, BM was used

independently by each simulation engine ([22, 29]). Thus, the global analyser dealt with a

composition of subsequences of (almost independent) batch means, but the mean values

submitted by different simulation engines could be calculated over different batch sizes. The

parallel version of SA/HW is described in [22].

All the numerical results presented in this Section were obtained using the M/M/1/∞
queuing system  as the reference simulation model. Simulations of this queueing system were

stopped as soon as the steady-state results reached a relative precision of at least 0.05 at the

0.95 confidence level, where relative precision is defined as the ratio of the current half-width

of the confidence interval of mean to the current value of the estimated mean. All series of

replicated simulations were executed using strictly non-overlapping sequences of pseudo-ran-

dom numbers, generated by a multiplicative congruential generator with multiplier 75 =

16807 and modulus 231-1. This generator is used in simulation languages such as SIMAN
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and SLAM II [19]. Simulations runs for comparing different methods or strategies were

performed using identical pseudo-random numbers.

In a practical implementation of the rules R1-R3 of sequential coverage analysis we have to
decide on (i) the minimum number of bad confidence intervals, NBmin, which have to be

recorded before the sequential analysis of coverage can start, and (ii) the minimum length of

simulation runs for producing valid steady-state estimates.
To determine NBmin we looked at the convergence of coverage to its limiting value as a

function of the number of replications. Figures 1 and  2 show the coverage convergence

curves obtained for the BM method, having run multiple independent replications of the

M/M/1 queueing system loaded at ρ = 0.7, for simulations on P = 1 processor, and for P = 2

and 4 processors, respectively. (Note that the curves are drawn to different scales.) The curve

in Figure 1a  shows the type of convergence of coverage for P = 1 processor when none of the

rules R1-R3 is applied. The next three curves (Figures 1b, c and d) were obtained assuming
Nbmin = 30, 100, and 200. Additionally, to implement R3, when NBmin “bad” confidence

intervals had been recorded, the average length of a simulation run was calculated, and all

simulation runs shorter by more than one standard deviation than the average simulation run

length were discarded. At the points where these operations were executed, the coverage has

improved, as indicated by jumps in the convergence curves in Fig. 1b, c and d. Thus, filtering

out simulation runs that are too short removes significant bias in the results.
Next, if the number of bad confidence intervals was not smaller than NBmin, the coverage

was estimated sequentially, taking into account only sufficiently long replications. Otherwise,

more “bad” confidence intervals would need to be recorded first. Sequential analysis of

coverage was stopped when the relative precision of coverage dropped to within its required

level (in our case, the threshold was 5% at 0.95 confidence level).
Comparing the locations of the points at which  Nbmin = 30, 100, and 200 “bad”

confidence intervals were recorded (Figures 1b, c, d) with the curve of Figure 1a, one can
clearly see that at the point corresponding to Nbmin = 30 the coverage curve has not yet

settled down, and that about Nbmin = 100 is necessary for reasonable convergence. (On this

basis, the preliminary results of sequential coverage analysis  for Nbmin = 30, published in

[4],  cannot be regarded as reliable.) This is consistent with other results for BM, obtained

from simulations of the M/M/1 queueing system at different load levels. Similar effects can

be also observed when running simulations concurrently on multiple processors; see Figures

2a and b, showing coverage convergence curves for P = 2 and 4 processors, respectively.

Similar conclusions could also be drawn when studying the results we obtained for the

method of Non-overlapping Batch Means proposed by Heidelberger and Welch. Thus, in our
studies we used Nbmin = 200.  The convergence curves in Figures 1b, c and d, as well as in

Figure 2,  end at the stopping points of the reported studies of coverage.
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The results of our coverage analysis of the method of BM and SA/HW, when they are

applied in simulations on single processors, are shown in Figures 3 and 4, and Table 1 and 2.

The results following the traditional fixed-sample size approach (coverage analysis over 200

replications) are shown in Figures 3a and 4a, and Tables 1a and 2a, while Figures 3b and 4b,

and Tables 1b and 2b, show results following our methodology of sequential analysis of

coverage, ie. applying the rules R1, R2 and R3. The second and third columns in the tables

show the total number of confidence intervals and the number of “bad” confidence intervals

used in the analysis of coverage at a given load level. The fourth column in Tables 1b and 2b

shows the number of replications whose results were discarded because of insufficient

simulation run lengths, i.e., because their lengths were below one standard deviation from the

mean simulation length (of the M/M/1 queueing system at a given load level).

It appears that the traditional approach cannot produce reliable estimates of coverage. In

these specific examples it underestimated the quality of the results produced by BM and

SP/HW.

Figures 5 and 6 depict the results obtained from sequential coverage analysis of BM and

SA/HW when the simulations were run concurrently on P = 2 and 4 processors. As these

results show, the quality of both BM and SA/HW improves as the number of simulation

engines (processors) increases. This is a reasonable consequence of using the MRIP scenario,

since by increasing the number of independent simulation engines one introduces more

independent subsequences of output data (one subsequence per simulation engine), and the

quality of the pooled estimators used in BM and SA/HW improves.

The question of whether these methods remain valid for heavier loaded systems, i.e. for ρ >
0.9, as well as for larger number of processors, remains open. Experimental studies of heavily

loaded systems require very long simulation runs. On the other hand, the theoretical

properties of SA/HW suggest the existence of an upper level of P, above which this method of

analysis of simulation output data can become invalid.

4. Conclusions

We have formulated basic rules that should be followed in proper experimental analysis of

the coverage of different steady-state confidence interval estimators. Our main argument is

that such a meta-analysis should be done sequentially. Coverage results for the methods of

Batch Means and Spectral Analysis have been presented and compared with those obtained

by the traditional, non-sequential approach. As advocated in [17] and [26], to draw more

general conclusions about performance of interval estimators used in various methods of

steady-state simulation, we need to consider a number of different simulation models, since

the results obtained for one system (in this paper: M/M/1∞) are not sufficient. Additionally, it
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is unlikely that a single method of sequential analysis of simulation output data could be

universally valid. To encourage cooperation and to intensify research in this area,

representative, but analytically tractable, systems in various application areas of simulation

(computer systems, telecommunication networks, industrial processes, etc.) should be

selected and used as standards in experimental analysis of coverage. Unfortunately, even

though such a demand was formulated for the first time in 1980 [26],  no progress in reaching

such an agreement can be reported.
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Figure 1. Coverage as a function of the sample size for BM in steady-state
simulation of an M/M/1/∞ queueing system for ρ = 0.7, P = 1 processor.

(a) No filtering of output data, (b) NBmin = 30,
(c) NBmin = 100, (d) NBmin = 200.
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Figure 2. Coverage as a function of the sample size for BM in steady-state
simulation of an M/M/1/∞ queueing system for ρ = 0.7, NBmin = 200.

(a) P = 1 processor, (b) P = 2 processors.
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Figure 3. Coverage analysis of BM for P = 1 processor.
(a) Fixed sample size of 200 replications;
(b) sequential analysis for NBmin = 200.
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Figure 4. Coverage analysis of SA/HW for P = 1 processor.
(a) Fixed sample size of 200 replications;
(b) sequential analysis for NBmin = 200.
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Figure 5. Coverage of BM when simulation is
executed on P = 1, 2 and 4 processors.
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Figure 6. Coverage of SA/HW when simulation is
executed on P = 1, 2 and 4 processors.


