
Distributed Stochastic Discrete-Event Simulation
in Parallel Time Streams

K.Pawlikowski, V.Yau and D.McNickle

University of Canterbury
Christchurch, New Zealand

Abstract . Quantitative stochastic simulation as a tool used by engineers of various
disciplines for studying and evaluating performance of various systems suffers from the fact
that sound simulation studies requires very long runlength to obtain the results with the
accuracy. In this paper we look at traditional approaches to distributed quantitative stochastic
simulation and propose a new scenario, named Multiple Replications in Paralel Time Streams
(MRIP), that solve the problem in an efficient way. An implementation of MRIP in a
simulation package AKAROA has been also described. AKAROA accepts ordinary (non-
parallel) simulation models and creates fully automatically the environment required for
running MRIP on workstations of a local area network. Presented results show that MRIP
offers linear speedup of simulation. Limitations of this scenario for running distributed
quantitative stochastic simulation are also discussed.

1. Introduction

Over the last decade discrete-event simulation has become probably the most commonly
used tool by engineers of various disciplines for studying and evaluating performance of
various systems. This is the result of significant achievements in electronic and computer
engineering that have led to the broad proliferation of powerful and cheap computers, and
significant achievements in software technology, that have resulted in very simple and
efficient interactive human-computer interfaces. Today, it is natural for telecommunication
engineers to study processes occuring in data communication networks by watching their
animated, dynamic graphical representations on monitors, using data generated by computers
during simulation runs. There is easy access to various user-friendly simulation packages in
which traditional discrete-event simulation modeling is supported by various concepts of
artificial intelligence. Some of these packages totally release users from burdens of
programming, allowing then to construct simulation models from typical components
appearing on screens as icons. This situation has created a climate for spreading a popular
impression that simulation is mainly an exercise in computer programming. This is certainly a
totally misleading and dangerous opinion if it is applied to quantitative simulation studies,
conducted for assessing the performance quality of simulated systems. Certainly, "succeeding
in simulation requires more than the ability to build useful models" [KIVI91], and some claim
that modelling of a simulated system represents only 30-40% of the total effort in most
successful simulation projects [LAWM91]. One of the inherent problems of quantitative
simulation is credibility of the final results.

This is specially true in the case of stochastic discrete-event simulations, i.e. when
simulated events are functions of (pseudo)random numbers. Such simulation should be
regarded as a statistical experiment, and, as in any statistical experiment, the final results
should be given together with their accuracy, i.e. with the widths of their confidence intervals
at an assumed confidence level. As warned by J. Kleijnen [KLEI79]: "... computer runs yield
a mass of data but this mass may turn into a mess <if the random nature of such output data
is ignored, and then >... instead of an expensive simulation model, a toss of the coin had
better be used". Unfortunately, ignoring this has become very widespread in many areas.
B.Gaither, the Editor-in-Chief of the ACM Performance Evaluation Review, complaining
about the way stochastic simulation is used in computer science and engineering, stated in his
editorial that he did not know of "... any other field of engineering or science where similar

Simulation in Parallel Time Streams 2

liberties are taken with empirical data ..." [GAIT90]. This situation can be partially
explained by the fact that some stochastic simulation studies, in particular if aimed at
evaluating systems in their steady-state, might require knowledge of sophisticated statistical
techniques.

Another inherent problem of stochastic simulation is that simulation of even moderately
complex models can be computationally intensive and require very long simulation runs.
Excessive runtimes hinder development and validation of simulation models, and can even
totally inhibit some performance evaluation studies. The obvious solution is to speed up
simulation by executing it on a multiprocessor or distributed computer system. Traditionally,
distributed or parallel1 stochastic simulation has meant Single Replication in Parallel
(SRIP), based on many processors cooperating in executing a single replication of a simulated
system. An alternative scenario is to run Multiple Replications in Parallel (MRIP), with
processors engaged into running their own replications of the simulated system but
cooperatingwith central analyzers (one central analyzer for each performance measure
analyzed) that are responsible for observing the stopping criteria of the simulation.

Research in distributed and parallel simulation has been almost entirely focused on SRIP.
In this scenario, a simulation process and/or simulation model is partitioned between a
number of processors. When a simulation process is distributed then this distribution is done
at a functional level, and the logical topology of interprocessor connections may reflect
different functional elements of the simulation (event set processing, input/output processing,
etc.); see eg. [BILE85]. It is obvious that this method cannot offer a substantial speedup in
itself, since the degree of such distributiveness is limited.

The second option for SRIP is to partition a given simulation model is into a set of
submodels to be simulated at different processors, of tightly or loosely coupled
multiprocessors systems. The processors responsible for running processes related with
different simulation submodels occassionally have to synchronise the advance of simulated
processes. Many different methods have been proposed to achieve such a synchronisation; see
e.g. [CHAN81, CHAND83, MISR86, REED87, LUBA89, CHAM90, FUJI90]. Generally
speaking, it is achieved by exchanging timestamped messages between participating
processors. Reasonable speedup is possible, provided that a given simulation model is highly
decomposable. Unfortunately, this feature is not frequently observed in practise, thus the
efficiency of this approach is strongly application-dependent [WAGN89]. The research in
distributed/parallel processing, having successfully solved many related problems, has not led
yet to a portable and efficient tool for distributed stochastic simulation.

MRIP has been considered only in a few publication (see [HEID86, HEID88, GLYN91,
REGO91, SUND91, PAWL92, REGO92, YAUP93]), despite that, as our experience has
shown, it is an attractive alternative scenario for quantitative stochastic simulation that
potentially offers good speedup, linear with the number of procesors involved. Also,
considering statistical properties of results when applying SRIP and MRIP in steady-state
simulation, it is possible to show that the latter scenario is more efficient than the former, in
the sense of the mean squared error of final estimates, if the problem of the initialization bias
is effectively solved [HEID86].

In this paper we report results of our research project on developing fully automated
version of MRIP and its implementation in AKAROA, started in the middle of 1991.
AKAROA is a user-friendly package for running distributed quantitative stochastic
simulation based on MRIP. It solves both main problems of such a simulation, by applying
fully automated control of accuracy of the final results (a parallel version of sequential
estimation based on spectral analysis [PAWL90], as described in Sec.2), and fully automated
distribution of simulation for concurrent execution on many procesors, see Sec.3. The
potentials and limitations of our version of MRIP, together with results of experimental
studies of AKAROA are reported in Sec.4. While AKAROA has many features in common
with EcliPse [REGO91, SUND91, REGO92], it also creates very different environment for
running simulation. A user, having prepared a sequential simulation program has only to

1 The terms "concurrent", "parallel" and "distributed" are differently understood in different areas,
appplications and interest groups. For the purpose of this paper they are synonymous, meaning a simulation
executed by a number of cooperating processors during the same time interval.

Simulation in Parallel Time Streams 3

declare the required level of precision of the final results, e.g. 5%, and the maximum possible
length of the simulation run (say, no more than 10 000 000 observations to be collected). All
other decisions and functions are transparent for users.

Without a loss of generality we limit our discussion to simulation models based on
queuing networks. While such models are natural in modelling computer systems,
telecommunication networks and manufacturing systems, they also find alpplications in many
other areas of science and engineering, e.g. in computational physics [LUBA88]. We will
discuss here only the most difficult case of quantitative stochastic simulation: its application
in studying performance of systems in steady-state, i.e. over very long period of time, as the
time tends to infinity.

2. Preliminaries: Statistical Aspects of Non-distributed Steady-State Simulation

As mentioned, any performance evaluation studies of systems based on quantitative
stochastic simulation should include proper statistical analysis of output data. In practise, this
means that we should control the precision of steady-state estimators, i.e. the final estimate of
an analysed parameter Θ should be determined together with its confidence interval (θ-∆1,
θ+∆2), at a given confidence level 1-α, i.e. by

 P(θ - ∆1≤Θ≤θ + ∆2)=1-α (1)
where θ is the final estimate of Θ, and ∆2+∆1 is the width of the confidence interval. The
precision of estimates can be then measured by

 ε = Error! (2)
ε is known as the relative precision. In the context of quantitative steady state simulation, the
precision of the final results can be controlled if it is sequentially checked at consecutive
checkpoints, and compared with the (worst) acceptable level of precision, εmax. The
simulation is stopped at a given checkpoint if the stopping criterion (the current value of
relative precision ε being not greater than εmax, for given εmax, 0<εmax<1) is satisfied for the
first time. In such a case we can claim that θ±0.5 (∆2+∆1) contains the correct value of Θ with
probability 1-α.

This approach can be easily applied when analyzing performance measures using
cumulative estimators. The simplest performance measure of this type is the sample mean µx
, that, for given sequence of observations x1, x2, ..., xn, is estimated by the arithmetic
average, thus

θ = X,
–
(n) = Error!. (3)

In this case , by the Central Limit Theorem,

∆1 = ∆2 = tn-1,1-α/2 σ,^ [X,
–
(n)] , (4)

where σ,^ [X,
–
(n)] is the estimator of standard deviation of X,

–
(n) and tn-1,1-α/2 is the (1-

0.5α) quantile of Student t-distribution. The main analytical problem is to get a reliable

estimate of σ, [X,
–
(n)] or, equivalently, of var[X,

–
(n)] = σ2[X,

–
(n)], since the classical

formulae require that collected observations x1, x2, ..., xn are realizations of independent and
normally (or at least identically) distributed random variables X1, X2, ..., Xn. Unfortunately,
observations collected during typical stochastic simulations are neither independent or
identically distributed. In the matter of fact, they are usually highly correlated. Also, a well

known formula for estimating var[X,
–
(n)] from an autocorrelated and stationary (thus

identically distributed) sequence of observations x1, x2, ..., xn can not be applied because of
the dificulties of estimating autocovariances of higher order within finite samples of data.

A number of techniques for accurate estimation of σ2[X,
–
(n)] has been proposed to be

applied in non-distributed sequential simulation; see a survey in [PAWL90]. Our extensive
studies of these techniques ([PAWL88, PAWL91]) led us to select SA/HW, the method based
on spectral analysis, in its version proposed by Heidelberger and Welch [HEID81], as the

method of analysis of σ2[X,
–
(n)] in fully automated quantitative steady-state simulations.

Simulation in Parallel Time Streams 4

SA/HW produces reliable estimates in the sense of their coverage (correspondence between
the theoretical confidence level and its experimental correspondence, analysed over a long
series of simulations) provided that simulated systems are not too heavy loaded, i.e. are
utilized in no more than 90%. This is the common weakness of all techniques developed for

automated analysis of σ2[X,
–
(n)], and its removal is one of topics of our current research

activities [PAWL93].
SA/HW requires that collected observations belong to stationary time series, thus

observations collected during initial transient periods of analysed processes should be
discarded. For detecting the length of initial transient period one can use a sequential
stationarity test presented in [PAWL90] or [PAWL93]. Only then the proper sequential
analysis of steady-state statistics of simulated systems can begin. Under SA/HW only one
(long) simulation run is executed at each setting of input variables. Thus, one can distinguish
two stages in such automatic sequential steady-state simulations, as illustrated in Fig.1. A
useful practical feature of this technique is that it can work with reduced data sets. During the
whole course of a single simulation, we can work with a fixed number of (aggregated) output
data points, being batch means calculated over batches that have their size increased as new
observations are collected.

3. Distributed Quantitative Stochastic Simulation

As mentioned, practical simulations typically require excessively long runs, if executed on
single processors. This has motivated applications of distributed and parallel processing for
performing discrete-event simulation, and stochastic simulation in particular. Distributed
stochastic simulation of queueing networks has also become an attractive domain for
experimenting with concurrent processing because of the potentially high degree of
parallelism of operations and distributiveness of network structures. Traditionally,
applications of distributed, parallel processing in the area of stochastic simulation have
focused on speeding up execution of single replications of simulation models. Another
approach is to consider any instance of quantitative stochastic simulation as a statistical
experiment during which statistical data are generated by a processor(s). Such experiments
can be speeded up by generating statistical data in parallel, i.e. running replications of the
simulated system in

Simulation in Parallel Time Streams 5

determining the length
of the initial transient

period

 the required precision has been
obtained

Stage 2

STOP

steady state analysis

estimate parameters and
test their precision

STOP
 simulation run too

long

START

detect the length of
initial transient data

 simulation run too
long

STOP

Stage 1

Fig.1. Flowchart of sequential analysis of of one time-series of observations
collected during steady-state simulation

parallel, on many processors, under control of a global analyzer(s) responsible for analysing
submitted data and detecting when the stopping condition of simulation is satisfied. Here,
these two scenarios of distributed quantitative stochastic simulation are called Single
Replication in Parallel (SRIP) and Multiple Replications in Parallel (MRIP), respectively .

3.1 Single Replication in Parallel. Following this traditional way of applying concurrent
processing in quantitative stochastic simulation, it can be achieved at functional level of
simulation, or it can be done by distributing simulation model. These two solutions we call
here briefly asSRIP.F andSRIP.M, respectively. In the former, the logical topology of
interprocessor connections reflects different functional elements of the simulation and such
activities as random variate generation, event list manipulation, and statistical analysis of
output data are performed at separate processors; see eg. [WYAT83, BILE85, KRIS85,
ZEIG87]. But the extent of functional distributiveness of any simulation is generally not
significant [COMF81, BRIN88]. Let us also note that the fine granularity of decomposition
of support functions needed for their parallel execution necessitates frequent communication
among subprocesses. This is connected with a more general problem of concurrent
processing, discussed e.g. in [MCCR89]. Apart from consuming processor power, in-
terprocess communication puts limitations on multiprocessor architectures that can be used in
such applications. Communication between processes on different processors may substa-
ntially increase total traffic on the time-shared bus and/or multiple-bus of multiprocessor

Simulation in Parallel Time Streams 6

systems to such extent that it becomes the bottleneck, increasing the amount of time the
processors are blocked waiting for access to a common memory module. Even if the number
of shared buses were increased, contention for memory (processors queue for accessing
common memory module(s)) can create another bottleneck limiting effective processing
power. Thus, one should not expect that this strategy allows to achieve a significant speedup
[BURK90]. Because of that, SRIP.F is not satisfactory efficient to be used on its own.

In SRIP.M, speedup is achieved by executing (interdependent) parts of the simulation
model in parallel, at different processors. It is done by abandoning the concept of shared
objects, such as the global simulation clock and event list, and using a synchronisation
algorithm instead, to ensure that causality of events is maintained. The synchronisation of
parallel (sub)streams of events simulated at different processors is achieved by exchanging
time-stamped messages, in an attempt to protect against causality errors, i.e. situations in
which wrong synchronization between events causes that future actions affect the past. For
this purpose, either an optimistic or conservative synchronisation algorithm can be used. In
the former class of algorithms, event-carrying messages are allowed to be processed as soon
as they are available, so there is no strict avoidance of causality errors. If such an error occurs,
it is corrected by rolling the local time back. This is the basic idea implemented in the so-
called Time Warp algorithm and its numerous variations [FUJI90]. Conservative
synchronization algorithms ensure that, before an event is processed, any its prior event has
already been executed. The first conservative algorithms were proposed independently by
Chandy and Misra, and Bryant in 1977-79. Since then their numerous improvements have
been investigated; see [FUJI90].

There are natural weaknesses and limitations on efficiency of SRIP.M. Firstly, it has been
shown that a high structural parallelism of simulation models does not imply similar high
parallelism in the simulation of that model. For example, the maximum speedup achievable
when simulating a simple computer system (a CPU, two I/O devices and N terminals forming
a closed queueing network) cannot be greater then 3.7 [WAGN89]. On the other hand, there
are reports of many successful applications of distributed stochastic simulation executed in
SRIP.M scenario, using either optimistic and conservative synchronisation algorithms. For
example, a speedup as high as 1900 was demonstrated on a 16384 processor Connection
Machine [LUBA89]. Generally, an experienced simulator should be able to obtain a good
speedup, provided that a given simulation model is well decomposable. Unfortunately, this
feature is rarely observed in simulation practise. Thus, the success is strongly application-
related. And, if deadlocks and causality errors occur too often, or mechanisms for their
protection against them are too complicated, the resulting simulation can be even slower then
non-distributed one. This scenario of distributed stochastic simulation is also generally not
well suited for running on distributed computer systems, such as networks of workstations,
since there are substantial costs connected with interprocess communication. SRIP.M is also
not fault-tolerant. If one processor or workstation running a sub-task fails, then the simulation
fails too, due to causality between subtasks. Finally, this is the scenario of distributed
stochastic simulation that does not seem to be well suited for automation, despite the fact
that it uses single time-streams of data (one per each perormance measure), and, because of
that, it could rely on sequential techniques of simulation output data developed for non-
distributed simulation, such as SA/HW mentioned in Sec.2. But, the time order in which
some observations are collected can differ from the logical order of their occurance in the
simulated time, if they are collected from different logical (sub)proceses, or, some
observations may need to be discarded if a causality error occurs. A simple solution could be
to use time-stamped observations. However, this could generate an overhead consuming
additional space and time resourses. Such aspects of sequential output data analysis in
SRIP.M scenario, and associated problems, have not been studied yet.

3.2. Multiple Replications in Parallel (MRIP). In the light of these restrictions and
limitations of SRIP, we have recognized that the duration of quantitative stochastic simulation
directly depends on the time needed for collecting the required number of observations. If a
few performance measures are studied during one simulation experiment, then the simulation
is finished when all sequences of observations (one sequence per each performance measure)
contain sufficiently many data items. Thus, a simple way for increasing the rate at which

Simulation in Parallel Time Streams 7

observations are generated is to produce them in parallel time streams, i.e. to run statistically
different replications on many processors, using the same simulation model. One can view
these simulation replications run at different processors as simulation engines working in a
team and producing samples of output data (one sample per each performance measure).
Observations generated by different simulation engines, but representing values of the same
performance measure, are submitted to the global analyser responsible for analysing this
performance measure. Accepting arguments about random nature of results obtained from
stochastic simulation, it is important to produce the final results with the assumed precision,
Eq.(2). It requires the current precision of results be checked at consecutive checkpoints. The
analysis of each performance measure is then continued until its stopping condition is not
satisfied. All simulation engines run as long as the analyses of all performance measures is
not finished. At that instant of time all simulation engines are stopped and global analysers
produce the final results.

Distributed simulation in MRIP can be carried on with any simulation model, either on
multiprocessor computers or multicomputer networks. Very little is know about estimators,
even about estimators of sample mean, that could be applied in MRIP. Parallel versions of
the method of Independent Replications, in the context of non-steady state simulation was
analysed in [HEID88, GLYN91]. It was shown that an extreme care has to be taken when
selecting estimators since some obvious choices were shown guarantee convergence to the
wrong value when the number of processors increases. On the other hand, studying
properties of MRIP as the scenario for running steady-state simulation, it was shown that
MRIP can be more efficient that SRIP.M if the problem of initial transient is effectively
solved [HEID86].

Relying on our previous experience in non-distributed stochastic simulation, we have
decided to adopt the method of SA/HW (discussed in Sec.2) also in distributed simulation, in
MRIP scenario. Our proposal is a parallel generalization of SA/HW, named the Spectral
Analysis in Parallel Time Streams (SA-PTS). Virtual-real time interactions between
processes at simulation engines and global analysers in such version of MRIP are depicted in
Fig.2. According to SA-PTS, P logically equivalent instances of a simulation model are
launched at P processors at the beginning of the simulation. Each instance is run in a time-
stream parallel to others, using different sequence of (pseudo)-random numbers. At the
beginning, stationarity tests are applied locally within each replication, to determine the outset
of steady state conditions in each time-stream separately, and the sequential SA/HW method
is used to estimate the variance of local estimates at consecutive checkpoints. At each
checkpoint the current local estimate and its variance are sent to the global analyser which
computes the current value of the global estimate and its precision. Thus, when the simulation

engine i reaches its check point j, it sends a message containing the pair {X,
–
 i(nj), Vij = σ,^

2[X,
–
 i(nj)}, the mean and itsvariance, to the global analyser responsible for analysis of X,

–
 .

Thus, the global precision of each estimator is analysed following partially ordered sequence
of checkpoints (checkpoints associated with the same simulation engine are ordered in time,
but we get a randomly ordered sequence of checkpoints from different processors as they

Simulation in Parallel Time Streams 8

S
T
O
P

 Spectral Analysis in Parallel Time Streams
 (= local checkpoint parameter 1,
 = local checkpoint parameter 2,
 = local checkpoint parameter 3,
 Gi = Global Estimation of parameter i, i=1,2,3.)

Time Stream 1

Time Stream 2

Time Stream P

Initial Transient

G1 G2 G3

Virtual Time
Streams

Real Time

Fig.2. Virtual time -real time interactions between processes at simulation engines
and global analysers in SA-PTS

followed by a given global analyser). If P processors are used to in a given simulation, each
time when the global analyser is active it can use up to P partial estimates of variance, V1j1 ,
V2j2 , ..., VPjP, submitted from independent replications of the simulated process that
reached the checkpoints j1, j2 , ..., and jP, respectively. When p of P processors have
reached at least the first checkpoint of the process they simulate, the pooled mean is estimated
over k= n1j1+n2j2+...+npjp observations, i.e. using n1j1 data collected by processor 1 at its
checkpoint j1, n2j2 data collected by processor 2 at its checkpoint j2, etc. In the simplest case,
the estimate of polled vaiance can be obtained as

 σ,^2
,SAPTS [X,

=
(k)] = (Error!)2 V1j1 +(Error!)2 V2j2 + ...(Error!)2 VPjP

(5)

where X,
–
 i(nij i) is the most recent point estimate of the mean obtained from the simulation

engine i, at its most recently observed checkpoint ji. Let us note that for determining the
confidence interval for the sample mean µx, one has to know the probability distribution of
Error!. We have assumed that it is approximately governed by Student t-distribution with p
times d degrees of freedom (where d equals the number of degrees of freedom of t-statistic
coming from one replication2), if data from p simulation engines are used for determining
precision of a given pooled estimate. Let us note the obvious fault tolerance of MRIP
regarding simulation engines. Sudden lost of one or more processors running simulaiton
engines is not catastrophic as long as at least one simulation engine remains is able to
continue submitting data to global analysers.

2 In SA/HW the degrees of freedom of this t-statistic do not depend on the number of observations collected
but on the way in which these observations are grouped for analysis [HEID81]

Simulation in Parallel Time Streams 9

At this stage no theoretical studies of SA-PTS are available. But our experimental results,
see the next section, show that it produces good estimates in the sense of experimental
converage of the final confidence intervals. Further work on improving quality our estimator
of the pooled variance is continued. SA-PTS has been implemented in AKAROA, our
simulation package for rapid modeling, automatic generation of multiple processes and
process control for concurrent stochastic simulation in MRIP scenario.

3.3. An Implementation of MRIP in AKAROA.

AKAROA (a simulation package for automatic generation and control of processes for
parallel stochastic simulation)3 accepts ordinary (non-parallel) simulation programs, and
creates fully automatically the environment required for running MRIP on workstations of a
local area network. Our main considerations when selecting a development language and de-
signing programming interface were simplicity, space and code efficiency, as well as
compatibility with existing sequential simulation programs. Recognizing naturality of object-
oriented approach in constructing simulation models by means of hierarchically encapsulated
classes of objects, AKAROA is written in C++. A user of AKAROA is required to add only
one extra line of code to his/her sequential simulation program before AKAROA
transparently parallelizes it. Thus, users do not even need to be aware of the existence of
multiple (parallel) simulation engines and control processes during simulation, since their
creation, location (machine and port addresses), cooperation, and inter-machine interprocess
communication, are hidden from users. AKAROA consists of three modules: Control,
responsible for controlling simulation run-time and analysis of output data collected during
MRIP-type steady-state simulation; Parallel Simulation Manager (PSM), responsible for
automatic initialization of parallel simulation processes, process management and
interprocess communication; and Build, a module which can be used for speeding up
construction of typical simulation models.

Sequential precision control services are arranged by declaring an object for output data
analysis. Its member function responsible for precision control is later called whenever a new
observation is recorded. The function accepts the value of a new observation as parameter
and returns one of two values that either orders the simulation to be continued (desired
precision of estimates has not been achieved) or to be terminated (all estimates reached the
required level of precision). Such implementation of MRIP simulation is semantically
identical to a normal non-distributed simulation; only the type of object that needs to be
declared is different. The syntax for object declaration and calls of object's member functions
are also identical to those in the non-parallel case. Internal binding of simulation processes to
various control processes is performed dynamically, yielding a flexible and fault-tolerant
system, featuring totally transparent parallelization from users' point of view, both in semantic
and syntactic sense.

PSM automatically creates and maintains an environment in which MRIP can be
executed (a collection of support processes distributed among the computers), parallelizes and
runs the simulation. Launching one simulation replication by activating a simulation program
equipped with necessary objects of Control and PSM creates a simulation engine. PSM
provides dynamic binding between simulation engines and global control processes.
Development of an efficient, portable and flexible Interprocess Communication (IPC)
subsystem of PSM was regarded as the critical factor for achieving high efficiency of
AKAROA. It is known that a careless implementation of IPC can result even in a negative
speedup of parallel processing, if high IPC overhead is generated. UNIX facilities for
implementing IPC mechanisms include streams, pipes, socket-pairs, and various types of
sockets [QUAR85]. AKAROA’s IPC subsystem must support communicating processes lo-
cated on different machines, and possibly belonging to different file systems. Having
considered basic IPC facilities, the IPC selected for AKAROA uses an extension of a
(synchronous) Remote Procedure Call (RPC) mechanism ([BIRR84], [BRIA90]) and appears
as an inter-machine interprocess communication based on UNIX Internet domain datagram-
type sockets that allow for fully file-less exchange operations. Selection of RPC was

3 Also: a nice spot on Banks Peninsula in the South Island of New Zealand.

Simulation in Parallel Time Streams 10

motivated by the fact that it has simpler semantics than the Rendezvous model [GEHA88],
and that, as a higher level of construct, it better encapsulates (simulation engine, control
process) interactions than alternative solutions based on point-to-point message-passing
[HOAR78]. Further possible improvements could be achieved by introducing an
asynchronous RPC [TAYK92], which is one of our future plans.

When N different parameters are estimated while P simulation engine processes are
maintained, then these P simulation engines have to communicate with N global control
processes. When initiating communication between a pair (simulator, control process), nine
pieces of PSM program are involved: simulator_stub, simulator_RPC_Runtime,
Director/Launcher RPC_Runtime, Director_Launcher_stub, Director/Launcher server, plus
global_control_runtime, global_control_stub, and global_control_server.

Whenever a simulation engine produces sufficiently many observations for reaching a
checkpoint of sequential estimtion, a new call to the global control process responsible for
gathering local estimates from the simulations engines can be initiated. The caller_engine, i.e.
the simulator_stub of the simulation engine making the call, generates a locate_request
datagram to a known director/launcher process, specifying its (the caller_engine's) machine
address and port number, the type of call and the instance of global_estimation control
process it wishes to be connected with. The director/launcher, once receiving the
caller_engine’s datagram, searches its Active_Control_Process (ACP) Database for the
requested instance of the process. If found, it transmits a datagram to the caller_engine with
the location of that process. Otherwise, the director/launcher launches new global SA-PTS
process, updates its ACP Database, and transmits a datagram to the caller_engine with the
location of newly created control process. Then, the caller_engine transmits a
global_estimation_request datagram with appropriate data (parameter's identification, its
current value and precision, the length of initial transient, and the length of simulation) to the
located instance of global control process. Upon receiving the datagram from the
caller_engine, the control process updates its local estimation database and computes a com-
bined estimate of the estimate and its relative precision. If the desired level of precision is
achieved, a stop datagram is returned to the caller_engine; otherwise a continue datagram is
transmitted. Subsequent calls to stub.global_estimation are directed to the global_control
process, without going through the Director/Launcher.

To use the objects provided by Control and PSM for automatic statistical analysis of
simulation output data, dynamic data precision control, and parallelization of a simulator for
parallel execution, a user's program should have

#include <AKAROA.h>
at its beginning. To transform an existing sequential (non-parallel) simulator into an MRIP
simulator, a parallel simulation interface object

sapts sa(int num_parameters, double max_precision, double confidence) ;
should be declared, before the desired service can be requested by calling the member
function(s) of the object. max_precison means the maximum acceptable value of the final
precision of results, while confidence is the assumed level of confidence. The only other
statement required is

result = sa1.processnewobs(new_observation, parameter_number) ;
that should precede the generation of an observation. After that, all tasks relating to precision
control and parallel execution will be performed without further user involvement.

For better memory utilization, control objects presented above were implemented dy-
namically, i.e. were composed of two (sub)objects for each parameter being estimated in the
simulation run, each of which being created only when its services are required. The first
constituent object is for testing for the end of transient phase, and the other is for steady state
precision control. The transient object is created only when the first observation has been ob-
tained, and does not occupy resources before then. This transient object is disposed after
steady state is detected, relinquishing the resources it occupied (its instruction and data space)
to the system. In a similar manner, the steady-state output analysis and precision control
object is created only after steady state is reached, and is disposed of when the desired
precision is obtained. As soon as an estimate achieves the required precision, objects devoted
to its precision analysis are freed. All these operations are transparent to the user.

Simulation in Parallel Time Streams 11

Making full use of the adopted object-oriented programming paradigm, AKAROA has
been also equipped with an object-oriented toolkit, called Build, which allows users to work
at a high level of abstraction when constructing new simulation models, either by using al-
ready existing building components (classes) or defining new components in terms of existing
ones. A component may model any entity of a given simulated system, for example a priority
queue, encapsulating its attributes, and procedures for their manipulation. One immediate
benefit of modular construction is that any component of the model can be readily and
independently tested. Its data can be then manipulated through specific access functions, such
as functions for enqueueing and dequeueing, helping to protect its consistency. Lastly,
components can be easily reused, either directly in another simulation or in definitions of new
components. Of course, there is no need for using Build with simulation models constructed
without its help.

4. Performance of MRIP

Dynamic properties of AKAROA, and the quality of SA-PTS estimators, were tested in a
series of 1600 benchmark simulation experiments using P=1, 2, 4, and 6 processors. Initial
studies of AKAROA's performance were done on a local computer network (a multiprocessor
SUN Server with two SPARC CPUs, various SUN 4 and SUN SPARC workstations) based
on Ethernet. Apart from the obvious differences in processing power between the
workstations available for our investigations, none of the machines was dedicated solely to
AKAROA’s use. In this situation, simulation experiments that we conducted for evaluating
AKAROA on single processors (P=1) s were done using the fastest machine available, during
its low load period's, while all multimachine experiments involved a mix of the fast and lower
rated workstations during normal working hours. Further, the priority of simulation processes
engaged in parallel simulations was lower, to accommodate other users of the network, while
the non-parallel simulations (P=1) were run at the highest priority level. Thus, the results
reported here are very conservative.

Performance of the MRIP implemented in AKAROA was assessed by measuring the real
time speedup, defined as the ratio of mean real times needed for stopping the same steady-
state simulations on one and P processors, for P= 1, 2, 4, 6. Note that it gives the reduction in
real time of simulation, as observed by the user, and accounts for the overhead incurred in
concurrent processing, including time required for creating parallel processes, management,
and inter-machine interprocess communication, as well as the delays caused by (non-
AKAROA) processes of generated by other users, sharing the machines used in the
experiments.

All presented here results were obtained from steady-state simulations of M/M/1/∞
queueing systems with traffic load ρ=90%; each result is an average over 200 experiments,
and the mean time spent in the system was estimated. The required level of precision of final
estimates was ±5%, at the 0.95 level of confidence. We were assuming also two different
strategies for determining the distance between consecutive checkpoints during the
simulaiton: one in which that distance was geometrically increasing and another one, in which
it was kept constant. While former strategy is typically used in sequential steady-state
simulations run on single processors, our results clerily show that the strategy to keep
checkpoints uniformly distributed is much better in the MRIP scenario.

The results showing the real time speedup of simulations achieved with AKAROA, as a
function of the number of workstations used, are depicted in Figs. 3 and 4. Both figures
clearly show the nearly linear (with the number of processors involved) speedup offered by
AKAROA in the case of geometrically distributed checkpoints, and even better speedup in
the case of uniformly distributed checkpoints.

The CPU-times, normalized to the average time required for generating an observation,
for different levels of parallelization are be compared in Figs.5. and 6. There are three results
for each value of P: the average minimum run length of a simulation engine within 200
repeated MRIP simulations; the average number of observations per simulation engine
produced during an experiment (averaged over 200 replications); and the average maximum
run length of a simulation engine. Comparing the maximum replication lengths as a function
of P, one can see that the reduction in CPU time with P workstations is greater than 1/P,

Simulation in Parallel Time Streams 12

suggesting super-linear speedup ! This may be due to the fact that AKAROA uses CPU time
more efficiently, and n observations generated by P workstations in parallel case (P>1) have
higher entropy than if they were collected from a single replication. The results also show
that using uniformly distributed checkpoints we can achieve substantially shorten simulation
runs. In the quantitative stochastic simulation there is a danger that shorter simulation runs
produce less reliable final resuls. But, as the results of coverage analysis presented in the
Table 1 show, the quality of estimators (better coverage) improves with the degree of
parallelism, what is probably caused by the fact that entropy of SA-PTS global estimates
grows with P. Further research in this area is needed.

Finally, Figs.7 and 8 show the average numbers of messages (datagrams) exchanged in
AKAROA as a function of P. One can see, the communication overhead grows slower than
linearly with the number of communicating processors in the case of geometrically distributed
checkpoints, and becomes practically constant for uniformly distributed checkpoints,
showing a clear advantage of MRIP over traditional SRIP scenario, and a good efficiency of
our IPC subsystem implemented in AKAROA. These figures show too, that higher speedups
characterizing uniformly distributed checkpoints result from the fact that simulations with
uniformly distributed checkpoints go through more checkpoints before they are stopped than
in the case of geometrically distributed checkpoints (in the former more datagrams are
transmitted.

Limitations of MRIP. Let us note that it is possible that when MRIP is applied in a
heterogenous network, with one processor much faster than others, slower processors may not
be able to contribute in parallel production of data since none of them would reach its first
checkpoint when the fastest processor stops the whole simulation by generating the required
number of observations.

On the other hand, the best speedup should be observed in homogeneous netwroks, with
all processors (smulation engines) operating at the same speed. It is possible that in such
situation all P processors would equally contribute in MRIP simulation, submitting, on
average, the same number of observations to global analysers. Since the number of
observations needed to obtain the required precision of results is fixed, at some stage each
processor will be able to reach only the first checkpoint, and the simulation will be stopped.
Let Pmax be the minimum number of processors when it happens. In such a situation, adding
more processors would not increase the speedup that has already reached its limit value equal
Pmax. The only effect of having more data (generated by P>Pmax processors) would be
better final precision of results.

If n1 means the mean number of observations, per simulation engine, needed to reach the
first checkpoint, and Nmax is the total number of observations needed for stopping simulation
with the required precision of results, then

Pmax = Nmax/n1 (6)
Basing on our experimental, it means that simulating such dynamic queueuing system as

M/M/1, loaded in 90 %, for typical values n1=1 000, and Nmax= 1 000 000, we get Pmax =
1000. When simulating data communication networks such as DQDB (a standard for fiber
optic metropolitan area networks, at 150 Mbps) loaded in 50 %, for typical values n1=500
and Nmax= 50 000, the maximum speedup Pmax = 100. These observations should yet to be
confirmed by experimental studies.

Let us note that if a distributed simulation originally based on SRIP is speeded up by
factor SSRIP , then applying additionally MRIP, i.e. parallelizing P times a simulation model
already distributed in lines of SRIP.F or SRI.M, will additionally increase the speedup P
times, i.e. the final speedup would be PSSRIP , as long as P≤Pmax.

5. Conclusions.

We have discussed main features of a new scenario for distributed quantitative stochastic
simulation, named Multiple Replications in Parallel, and compare it with traditional Single

Simulation in Parallel Time Streams 13

Replication in Parallel. Most important features of MRIP are its universality, as it can be
applied without exemption to any simulation model, and the high level of speedup it offers.

Whe presenting an application of MRIP in AKAROA, a new technique of outpt data
analysis (SA-PTS) has been introduced and assessed. The selection of this technique for
analysing output data in AKAROA was motivated by our intention of full automation of
distributed quantitative steady-state simulation. This eliminated for example the method of
regenerative cycles and independent replications, both adopted in EcliPse [REGO91,
REGO92, SUND92], that require some decisions to be undertaken by simulators before a
simulation, and, to make these decisions properly, one should know well the dynamics of the
simulated system. Nevertheless, we are investigating different solutions for full automation of
the independent replications [YAUP91], [PAWL93].

Further design issues of AKAROA that are under our current considerations include
equipping this package with a graphical interface, for visualization of various stages of
simulation, sequential data analysis and the final results.

Acknowledgement. This research was partially supported by the Research Laboratories
of Australian and Overseas Telecommunications Co. in Melbourne, Australia. The permission
of the Managing Director of AOTC to publish this paper is hereby acknowledged.

References

BILE85 Biles, W.E, Daniels, C.M., and T.J. O'Donnell. " Statistical Considerations in
Simulation on a Network of Multicomputers". Proc. 1985 Winter Simulation Conf., IEEE
Press, 1985, 388-393
BIRR84 Birrell A.D., and B.J.Nelson, "Implementing Remote Procedure Calls". ACM Trans
on Comput. Systems, vol.2, Feb.1984, pp.39-59
BRIA90 Brian N.B., T.E.Anderson, and E.D.Lazowska, "Lightweight Remote Procedure
Call". ACM Trans. on Comput. Sys., vol.8, Feb.1990, 37-55
BRIN88 Briner, J. "A Framework for Analysing Parallel Discrete Event Simulation". Proc. Int.
Conf. Manag. and Perf. Evaluation of Computer Systems, CMG'88, Dallas, 1988, 180-185.
BURK90 Burk, W.H. "Limitations to parallel Processing". Proc. 9th Int. Phoenix Conf.
Comput. and Commun., 1990, 86-93
CHAM90 Chamberlain, R.D., and M.A.Franklin. "Huerarchical Discrete-Event Simulation
on Hypercube Architecture". IEEE Micro, August 1990, 10-20
CHAN81 Chandy, K.M., and J Misra. "Asynchronous Distributed Simulation via a Sequence
of Parallel Computations". Commun. of the ACM, 1981, vol.24, No.11, 198-205
CHAN83 Chandy, K.M., J. Misra, and L.M.Haas. "Distributed Deadlock Detection". ACM
Trans. on Comp. Systems, vol.1, No.2, May 1983, 144-156
COMF81 Comfort, J., and A.Miller. "Considerations in the Design of a Multiprocessor-
Based Simulation Computer". In Modelling and Simulation on Microcomputers, ed. L.
Leventhal, So. of Computer Simulation, laJolla, 1981.
FUJI90 Fujimoto, R. "Parallel Discrete Event Simulation". Comm. of the ACM, vol.33,
Oct.1990, 30-60
GAIT90 Gaither, B. "Empty Empiricism". ACM Performance Evaluation Review, vol.18,
No.2, August 1990, 2-3
GLYN91 Glynn, P.W., and P.Heidelberger. "Analysis of Parallel Replicated Simulations
under a Completion Time Constraint". ACM Trans. on Modeling and Computer Simulation,
vol.1, no.1, Jan.1991, 3-23.
HEID81 Heidelberger, P., and P.D. Welch. "A Spectral Method for Confidence Interval
Generation and Run Length Control in Simulations". Comm. of the ACM, 1981, 233-245.
HEID86 Heidelbereger, P. "Statistical Analysis of Parallel Simulations". Proc. 1986 Winter
Simulation Conf., IEEE Press, 1986, 290-295
HEID88 Heidelbereger, P. "Discrete Event Simulations and Parallel Processing: Statistical
Properties". SIAM J. Stat. Comput.. vol.9, no.6, Nov. 1988, pp. 1114-1132
HOAR78 Hoare, C.A.R. “Communicating sequential Processes”. Comm. ACM, Feb. 1978,
75-83

Simulation in Parallel Time Streams 14

KIVI91 Kiviat, P.J. "Simulation, Technology and the Decision Process". ACM Trans. on
Modeling and Computer Simulation, vol.1, No.2, April 1991, pp.89-98.
KLEI82 Kleijnen, J.P.C., R. Van der Ven and B. Saunder. "Testing Independence of
Simulation Subruns: A Note on the Power of the von Neumann Test". Eur. J. Operational
Res., 1982, 92-93.
KRIS85 Krishnamurthi, M., U.Chandrasekaran, and S.Sheppard. "Two Approaches to the
Implementation of a Distributed Simulation System". Proc. 1985 Winter Simulation Conf.,
IEEE, Nov. 1984, 463-464
LAWM91 Law, A.M., and M.G. McComas. "'Secrets of Successful Simulation Studies".
Proc. 1991 Witer Simulation Conf., IEEE Press, 1991, 21-27
LUBA88 Lubaczevsky, B.D. "Efficient Parallel Simulation of Dynamic Ising Spin Systems".
J.Comp. Physics, vol.75, no.1, March 1988, 103-122
LUBA89 Lubachevsky, B.D. "Efficient Distributed Event-driven Simulations of Multiple-
Loop Networks". Commun. of the ACM, Jan. 1989, 111-123
MCCR89 McCreary, J.D., and H.Gill. "Automatic Determination of Grain Size for Efficient
Parallel Processing". Commun. of the ACM, vol.32, No.9, 1989, 1073-1078
MISR86a Misra, M. “Distributed Discrete-Event Simulation”.ACM Computing Surveys,
March 1986, 39-65.
PAWL88 Pawlikowski, K., and M. Asgarkhani. "Sequential Procedures in Simulation
Studies of Satellite Protocols". Proc. ITC'12, Torino, Italy, 1988, vol.6, 4.3B.3.1- 7.
 PAWL90 Pawlikowski, K. "Steady-State Simulation of Queueing Processes: a Survey of
Problems and Solutions". ACM Computing Surveys, vol.22, No.2, June 1990, 123-170.
PAWL91 Pawlikowski , K., and V.Yau."Independent Replications versus Spectral Analysis
of Output Data in Steady-State Simulation of High Speed Data Networks". Proc. 6th
Australian Teletraffic Research Sem., Wollongong, Australia, Nov. 1991, 322-330.
PAWL92 Pawlikowski, K., and V.Yau."An Automatic Partitioning, Runtime Control and
Output Analysis Methodology for Massively Parallel Simulations". Proc. European
Simulation Symp., ESS'92, Dresden, Germany, Nov.1992.
PAWL93 Pawlikowski , K., and C.Stacey. "Detection and Significance of Initial Transient
Period in Quantitative Steady-State Simulation". Will be published in Proc. 7th Australian
Teletraffic Research Sem., Melbourne, Australia, Dec. 1993
QUAR85 Quarterman, J.S., A.Silberschatz, and J.L.Peterson, “4.2BSD and 4.3BSD as
Examples of the UNIX System”, ACM Computing Surveys, vol.17, Dec.1985, 379-418
REED87 Reed, D.A., and A.D.Malony. "Parallel Discrete Event Simulation: a Shared
Memory Approach". IEEE Tran.s. Software Eng., vol.14, no.4, 1988, 541-553
REGO91 Rego, V.J., and V.S.Sunderam. "Concurrent Stochastic Simulation: Experiments
with Eclipse". Proc. Int. Conf. Perf. of Distributed Systems and Integrated Commun. Networks,
1991, 253-271.
REGO92 Rego, V.J., and V.S.Sunderam. "Experiments in Concurrent Stochastic Simulation:
the Eclipse Paradigm". J. of Parallel and Distributed Comp., vol.14, 1992, 66-84
SUND91 Sunderam, V.S., and V.J.Rego. "EcliPse: a System for High Performance
Concurrent Simulation". Software-Practise and Experience, vol.21, Nov. 1991, 1189-1219
TAYK92 Tay, B.H., E.K.Koh, and A.L.Ananda. "An Asynchronous Remote Procedure Call
Mechanism for Distributed Computing". Tech.Rep. TRB4/92, Dept. of Information Systems
and Computer Science, National Univ. of Singapore, 1992
WYAT8 Wyatt, D.L., and S.Sheppard. "A Language Directed Distributed Discrete Simulation
System". Proc. 1984 Winter Simulation Conf., IEEE, Nov. 1984, 463-464
WAGN89 Wagner, D.B., and E.Lazowska. "Parallel Simulation of Queueing Networks:
Limitations and Potentials". Performance Evaluation Review, vol.17, May 1989, 146-155.
YAUP93 Yau, V., and K.Pawlikowski. "AKAROA: a Package for Automatic Generation and
Process Control of Parallel Sotochastic Simulation". Proc. 16th Australian Computer Science
Conf., Brisbane, Australia, Feb. 1993, 71-82
ZEIG87 Zeigler, B.P. "Hierarchical, Modular Discrete Event Modelling in an Object-
Oriented Environment". Simulation, vol.49, no.5, 1987, 219-230

Distributed Stochastic Discrete-Event Simulation
in Parallel Time Streams

K.Pawlikowski, V.Yau and D.McNickle

University of Canterbury
Christchurch, New Zealand

0

1

2

3

4

5

6

S
pe

ed
up

1 2 4 6
No. of Processors (P)

Fig.3. Real time speedup vs the number of
processors employed.

Geometrically distributed checkpoints.

0

1

2

3

4

5

6

Sp
ee

du
p

1 2 4 6
Number of Processors

Fig. 4. Real time speedup vs the number
of processors employed.

Uniformly distributed checkpoints.

Simulation in Parallel Time Streams 16

0

1.0 105

2.0 105

3.0 105

4.0 105

5.0 105

6.0 105

7.0 105

8.0 105

No
. o

f O
bs

er
va

tio
ns

1 2 4 6
No. of Processors (P)

Av. Minimum Rep. Length

Overall Av. Rep. Lengths

Av. Maximum Rep. Length

Fig.5. Speedup measured by reduction in
CPU timevs the number of processors employed.

Geometrically distributed checkpoints.

0

2.000 105

4.000 105

6.000 105

8.000 105

1.000 106

1.200 106

N
o.

 o
f

O
bs

er
va

tio
ns

1 2 4 6
No. of Processors (P)

Av. Minimum Rep. Length

Overall Av. Rep. Lengths

Av. Maximum Rep. Length

Fig.6. Speedup measured by reduction in
CPU time vs the number of processors employed.

Uniformly distributed checkpoints.

0

20

40

60

80

100

120

140

N
o.

 o
f D

at
ag

ra
m

 T
ra

ns
m

is
si

on
s

1 2 4 6

No. of Processors (P)

Fig.7. Average number of datagrams exchanged
vs the number of processors employed.
Geometrically distributed checkpoints.

Simulation in Parallel Time Streams 17

0

200

400

600

800

1000

1200

Nu
m

be
r o

f D
at

ag
ra

m
 T

ra
ns

m
iss

io
ns

1 2 4 6
Number of Processors

Fig.8. Average number of datagrams exchanged
vs the number of processors employed.

Uniformly distributed checkpoints.

TABLE 1. Coverage and its confidence intervals for SA-PTS
at the confidence level =0.95. Uniformly distributed checkpoints.

P Mean 95% Confidence
 Interval

1 0.91270 (0.865000, 0.817630)
2 0.94000 (0.907079, 0.972921)
4 0.93000 (0.894631, 0.965369)
6 0.92000 (0.882393, 0.957607)

