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Abstract.

Since the birth of ARPANET and the first commercial applications of
computer networks, through explosion of popularity of the Internet and
wireless communications, we have witnessed increasing dependence of
our civilization on information services of telecommunication networks.
Their efficiency and reliability have become critically important for the
well-being and prosperity of societies as well as for their security. In this
situation, the significance of performance evaluation studies of current
and future networks cannot be underestimated. Increasing complexity of
networks has resulted in their performance evaluation studies being pre-
dominantly conducted by means of stochastic discrete-event simulation.
This paper is focused on the issue of credibility of the final results ob-
tained from simulation studies of telecommunication networks. Having
discussed the basic conditions of credibility, we will show that, unfor-
tunately, one cannot trust the majority of simulation results published
in technical literature. We conclude with general guidelines for resolving
this credibility crisis.

1 Introduction

Since the birth of ARPANET and the first commercial applications of computer
networks, through explosion of popularity of the Internet and wireless commu-
nications, we have witnessed increasing dependence of our civilization on infor-
mation services of telecommunication networks. Their efficiency and reliability
have become critically important for well-being and prosperity of societies as
well as for their security. In the United States, the Department of Defense has
listed Network Modeling and Simulation as one of the seventeen most important
research areas of Information Processing; see www.darpa.mil/ipto/.

Increasing complexity of modern networks has resulted in their performance
studies being predominantly conducted by means of computer simulation. A sur-
vey of over 2246 research papers on networks published in Proceedings of IEEE
INFOCOM (1992-8; in total 1192 papers), IEEE Transactions on Communi-
cations (1996-8; in total 657 papers), IEEE/ACM Transactions on Networking

? Invited talk at the opening of ICOIN’2003, 2003 International Conference on Infor-
mation Networking, Jeju Island, Korea, Feb. 2003



(1996-8; in total 223 papers), and Performance Evaluation Journal (1996-8; in
total 174 papers) has shown, see Figure 1, that over 51% of all publications on
networks’ performance reported results obtained by means of simulation, with
the rest of the papers relying on two other paradigms of science: theory and
experimentation. Such reliance on simulation studies of telecommunication net-
works raises the question of credibility of the results they yield.

The main credibility issues of quantitative simulation are discussed in the
next section. This is followed by a discussion of the results of a survey con-
ducted for showing how much researchers, who use simulation as the tool of
their scientific investigations, are concerned about credibility of the results they
produce. The paper concludes with general guidelines for conducting fast and
credible simulations of telecommunication networks.
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Fig. 1. Proportion of papers that reported results obtained by means of stochastic
simulation; from a survey of 2246 papers published in the Proc. IEEE INFOCOM
(1992-8), IEEE Trans. on Communications (1996-8), IEEE/ACM Trans. on Networking
(1996-8) and Performance Evaluation J. (1996-8).

2 Credibility of Simulation Studies of Networks

The first necessary condition of any trustworthy performance evaluation study
based on simulation is to use a valid simulation model, with an appropriately
chosen level of detail. Some experts assess that the modeling phase of a system
for computer simulation consumes about 30-40% of the total effort of a typical
simulation study [1]. In the case of telecommunication networks, it means a



conceptually correct model of the network, based on correct assumptions about
the network’s internal mechanisms, their limitations, appropriate characteristics
of simulated processes etc. Next, having implemented the model in software,
one needs to verify this implementation, to ensure that no logical errors have
been introduced. Validation and verification have been generally recognized as
important stages of any credible simulation study. A good discussion of general
guidelines for correct and efficient execution of these processes in simulation
practice can be found, for example, in [2]. However, these are only the first steps
for ensuring credibility of the final results of a simulation study, since ”succeeding
in simulation requires more than the ability to build useful models ...”, [3].

The next step is to ensure that the verified software implementation of a
given valid simulation model is used in a valid simulation experiment. In the
overwhelming majority of simulation studies of telecommunication networks,
networks or their components are modeled as stochastic dynamic systems. In
such a stochastic simulation-based experiment, two primary issues which have
to be addressed when trying to ensure its final validity are: (i) application of
appropriate source(s) of randomness, and (ii) appropriate analysis of simulation
output data. In this updated and extended version of [4], having discussed the
last two credibility issues in more detail, we will produce an evidence that one
cannot unfortunately trust the majority of simulation studies of telecommuni-
cation networks.

It is common practice today to use algorithmic generators of (pseudo-random)
uniformly distributed numbers as sources of the basic randomness for stochastic
computer simulation. Such a pseudo-random number generator (PRNG) gener-
ates numbers in cycles, i.e. having generated whole cycle of numbers, it begins
to repeat generation of the same sequence of numbers. Using the same pseudo-
random numbers again and again during one simulation is certainly a dangerous
procedure since it can introduce unknown and undesirable correlations between
various simulated processes. ”Results <of a stochastic simulation can be very>

misleading when correlations hidden in the random numbers and in the sim-
ulated system interfere constructively ...” [5]. Thus, the practical advice is to
use PRNGs that generate numbers in such long cycles that the generated num-
bers would not be repeated during even the longest simulation. In 2002, using
a workstation equipped with a CPU operating at 2.2 GHz, I could generate 106

pseudo-random numbers in less than 0.14 second. It meant that, since PRNGs
that are still the most frequently used today generate numbers in cycles of length
of order 231, whole cycle of numbers would be generated in about 4.8 minutes.
Assuming that the process of random number generation takes, say, 1% of the
total simulation time, such a PRNG could be safely used on a 2.2 GHz CPU in
a simulation lasting up to about 8 hours.

However, PRNGs with much longer cycles are required if we take seriously the
fact that the primary pseudo-random numbers should pass statistical tests for
being uniformly distributed. Namely, it can be shown that some tests will always
reject the hypothesis about distributional uniformity of pseudo-random numbers
if more than a fraction of the cycle is tested. For example, if we are concerned



with two-dimensional uniformity of pseudo-random numbers, then only O( 3
√

L)
numbers from a linear congruential PRNG with the cycle of length L can be used.
Longer sequences cannot pass a test of uniformity considered in [6]. Empirical
analysis of some popular PRNGs reported in [6] has specified that limit as 16 3

√

L.
This restricts the number of pseudo-random numbers available from a PRNG
with the cycle of 231

− 1 to just about 20 000, and to about 1 000 000 in
the case of PRNGs with the cycle of 248

− 1. Assuming as previously that the
process of random number generation takes 1% of the total simulation time, a
“statistically safe” PRNG, allowing to run a simulation on a 2.2 GHz CPU for up
to 8 hours, would need to have the cycle of at least 281 long. Practically during
any simulation, one needs two (or more) dimensional pseudo-random vectors
that should be uniformly distributed ....

As the computing technology continues advancing according to Moore’s law
and CPUs operating with clock frequencies well over 2.2 GHz are expected to
be commercially available soon1, we need PRNGs with cycles much longer than
281, to be able to run simulation experiments over a reasonably long time in-
tervals. Fortunately, such PRNGs have already been proposed. For example,
a PRNG known as Mersenne Twister, within a class of Generalized Feedback
Shift Register PRNGs, with a super astronomical cycle of 219937

− 1, and good
pseudo-randomness in up to 623 dimensions (!) for up to 32-bit accuracy, has
been proposed in [7]. Such a PRNG will remain “statistically safe” for any practi-
cal simulation experiment executed even on an all-optical computer, a technology
that some say can be available is 10 years. And ... its portable implementation in
C, on 32-bit machines, is much faster than a standard PRNG used in the ANSI
C rand() function2; see www.math.keio.ac.jp/matumoto/emt.html for the latest
news regarding the Mersenne Twister.

Thus, at this stage, there exist PRNGs that can be used as quite reliable
sources of elementary randomness in stochastic simulations. We only need to
use them. Unfortunately, uncontrolled distribution of various computer programs
has resulted in uncontrolled proliferation of really poor PRNGs, of clearly un-
satisfactory or unknown quality. Thus, the advice given by D. E. Knuth in 1969
is even more important today, in the era of Internet: ”... replace the random
generators by good ones. Try to avoid being shocked at what you find ...” [8].

2.1 Analysis of Simulation Output Data

Any stochastic computer simulation, in which random processes are simulated,
has to be regarded as a (simulated) statistical experiment and, because of that,
application of statistical methods of analysis of (random) simulation output data
is mandatory. Otherwise, ”... computer runs yield a mass of data but this mass
may turn into a mess <if the random nature of such output data is ignored, and
then> ... instead of an expensive simulation model, a toss of the coin had better

1 Written in December 2002
2 The ANSI C rand() function uses a linear congruential PRNG with modulus of 231,

1103515245 as the multiplier, and 12345 as the additive constant



be used” [9]. John von Neumann, having noticed a similarity between computer
simulators producing random output data and a roulette, coined the term Monte
Carlo simulation.

Statistical error associated with the final result of any statistical experiment
or, in other words, the degree of confidence in the accuracy of a given estimate
(point estimate), is commonly measured by the corresponding interval estimate,
i.e. by the confidence interval (CI) expected to contain an unknown value with
the probability known as the confidence level. In any correctly implemented
simulation, the width of a CI will tend to shrink with the number of collected
simulation output data, i.e. with the duration of simulation.

Two different scenarios for determining the duration of stochastic simulation
exist. Traditionally, the length of simulation experiment was set as an input to
simulation programs. In such fixed-sample-size scenario, where the duration of
simulation is pre-determined either by the length of the total simulation time
or by the number of collected output data, the magnitude of the final statistical
error of results is a matter of luck. This is no longer an acceptable approach !

Modern methodology of stochastic simulation offers an attractive alternative
solution, known as the sequential scenario of simulation or, simply, sequential
simulation. Today, the sequential scenario is recognized as the only practical
approach allowing control of the error of the final results of stochastic simula-
tion, since ”... no procedure in which the run length is fixed before the simulation
begins can be relied upon to produce a confidence interval that covers the true
< value > with the desired probability level” [2]. Sequential simulation follows
a sequence of consecutive checkpoints at which the accuracy of estimates, con-
veniently measured by the relative statistical error (defined as the ratio of the
half-width of a given CI and the point estimate), is assessed. The simulation is
stopped at a checkpoint at which the relative error of estimates falls bellow an
acceptable threshold.

There is no problem with running simulation sequentially if one is interested
in performance of a simulated network within a well specified (simulated) time
interval; for example, for studying performance of a network during 8 hours of
its operation. This is the so-called terminating or finite time horizon simulation.
In our example, one simply needs to repeat the simulation (of the 8 hours of net-
work’s operations) an appropriate number of times, using different, statistically
independent sequences of pseudo-random numbers in different replications of
the simulation. This ensures that the sample of collected output data (one data
item per replication) can be regarded as representing independent and identically
distributed random variables, and confidence intervals can be calculated using
standard, well-known methods of statistics, based on the central limit theorem;
see, for example, [2].

When one is interested in studying behavior of networks in steady-state, then
the scenario is more complicated. First, since steady-state is theoretically reach-
able by a network only after an infinitely long period of time, the problem lies
in execution of steady-state simulation within a finite period of time. Various
methods of approaching that problem, mostly in the case of analysis of mean



values and quantiles, are discussed for example in [10]. Each of them involves
some approximations. Most of them (except the so-called method of regenera-
tive cycles) require that output data collected at the beginning of simulation,
during initial warm-up periods, are not used to calculate steady-state estimates.
If they are included in further analysis, they can cause a significant bias of the
final results. Determination of the lengths of warm-up periods can require quite
elaborate statistical techniques. When this is done, one is left with a time series
of (heavily) correlated data, and with the problem of estimation of confidence
intervals for point estimates obtained from such data. However, although the
search for robust techniques of output data analysis for steady state simulation
continues ([11]), reasonably satisfactory implementations of basic procedures for
calculating steady-state confidence intervals of, for example, mean values and
quantiles have been already available; see, for example, [10] and [12].

There are claims that sequential steady-state simulation, and the associated
with it problem of analysis of statistical errors, can be avoided by running sim-
ulation experiments sufficiently long, to make any influence of the initial states
of simulation negligible. While such brute force approach to stochastic steady-
state simulation can sometimes lead to acceptable results (the author knows
researchers who execute their network simulations for a week, or longer, to get
the results that, they claim, do represent steady-state behavior of simulated net-
works), one can still finish with very statistically inaccurate results. It should be
remembered that in stochastic discrete-event simulation collecting of sufficiently
large sample of output data is more important than simply running the simu-
lation over a long period of time. For example, when analyzing rare events, the
time during which the simulated network is ”idle”, i.e. without recording any
event of interest, has no influence on the statistical accuracy of the estimates of
the event. What matters is the number of events of interest recorded.

Stopping stochastic simulation too early can give misleading, or at least in-
conclusive, results. Figure 2 shows the final results from sequential steady-state
simulation of a MAC protocol in a unidirectional bus LAN from simulation
stopped when the relative error dropped below 15% (Figure 2.a) and 5% (Fig-
ure 2.b). Even more significant influence of the level of statistical error on clarity
of results can be found in [4]. On the basis of this evidence, one can question the
sense of drawing conclusions on the basis of results with high statistical errors,
or results for which statistical errors were not measured at all !

Unfortunately, sequential stochastic simulation is still not popular among
designers of simulation packages, with overwhelming majority of them advocat-
ing analysis of output data only after the simulation is finished. This makes
the final statistical errors of results the matter of luck. Very few commercial
packages can execute simulations sequentially. Among a few packages designed
at universities and offered as freeware for non-profit research activities one
should mention Akaroa2 ([14]), designed at the University of Canterbury in
Christchurch, New Zealand. Recently, Akaroa2 has been linked with Network
Simulator NS2, allowing sequential simulation with models developed in NS2;
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(a) Statistical errors of 15% or less
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(b) Statistical errors of 5% or less

Fig. 2. Example showing influence of statistical errors on the final simulation results.
The assumed confidence level=0.95. Evaluation of a MAC protocol in a unidirectional
bus LAN considered in [13].

see www.cosc.canterbury.ac.nz/research/RG/net sim/simulation group.html for
more detail.

3 Credibility Crisis

It would be probably difficult to find a computer scientist or telecommunica-
tion engineer today who has not been trained how to assess and minimize errors
inevitably associated with statistical inference. Nevertheless, looking at further
results of our survey of eight recent proceedings of INFOCOM as well as three
recent volumes of IEEE Transactions on Communications, IEEE/ACM Trans-
actions on Networking and Performance Evaluation Journal, one can note, see
Figure 3, that, on average, about 77% of authors of simulation-based papers
on telecommunication networks were not concerned with the random nature of
the results they obtained from their stochastic simulation studies and either re-
ported purely random results or did not care to mention that their final results
were outcomes of an appropriate statistical analysis. Let us add that Figure 3
was obtained assuming that even papers simply reporting average results (say,
averaged over a number of replications), without any notion of statistical error,
were increasing the tally of papers “with statistically analysed results”.

While one can claim that the majority of researchers investigating perfor-
mance of networks by stochastic simulation simply did not care to mention that
their final results were subjected to an appropriate statistical analysis, this is not
an acceptable practise. Probably everybody agrees that performance evaluation
studies of telecommunication networks should be regarded as a scientific activ-
ity in which one tests hypotheses on how these complex systems would work if
implemented. However, if this is a scientific activity, then one should follow the
scientific method, generally accepted methodological principle of modern science,
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Fig. 3. Proportion of all surveyed papers based on simulation in which results were
statistically analysed; from a survey of 2246 papers published in the Proc. IEEE IN-
FOCOM (1992-8), IEEE Trans. on Communications (1996-8), IEEE/ACM Trans. on
Networking (1996-8) and Performance Evaluation J. (1996-8).

[15]. This methodology requires that any scientific activity should be based on
controlled and repeatable experiments.

The real problem is that the vast majority of simulation experiments reported
in telecommunication network literature is not repeatable. A typical paper con-
tains very little or no information about how simulation was conducted. Our sur-
vey has revealed that authors of almost 77% of papers reporting simulation-based
results did not care to inform whether their results came from a terminating or
from steady-state simulation.

While the principles of the scientific method are generally observed by re-
searchers in such natural sciences as biology, medicine or physics, this crisis
of credibility of scientific outcomes from simulation is not limited to the area
of telecommunication networks. It has spanned over whole area of computer
science, as well as electronic and computer engineering, despite of such early
warnings like that in 1990, by B. Gaither, then the Editor-in-Chief of the ACM
Performance Evaluation Review, who, being concerned about the way in which
stochastic simulation was used, wrote that he was unaware of ”any other field of
engineering or science < other than computer science and engineering> where
similar liberties are taken with empirical data ...” [16]. What can be done to
change the attitude of writers (who, of course, are also reviewers) of papers
reporting simulation studies of telecommunication networks ? Consequences of
drawing not fully correct, or false, conclusions about a network performance are
potentially huge ...



3.1 A Solution ?

The credibility crisis of simulation studies of telecommunication networks could
be resolved if some obvious guidelines for reporting results from simulation stud-
ies were adopted. First, the reported simulation experiments should be repeat-
able. This should mean that information about the PRNG(s) used during the
simulation, and the type of simulation, is provided, either in a given publication
or in a technical report cited in the publication. In the case of terminating sim-
ulation, its time horizon would need to be specified, of course. The next step
would be to specify the method of analysis of simulation output data, and the
final statistical errors associated with the results.

Negligence of proper statistical analysis of simulation output data cannot be
justified by the fact that some stochastic simulation studies, in particular those
aimed at evaluating simulated systems in their steady-state, might require so-
phisticated statistical techniques. On the other hand, it is true that in many
cases of practical interest, appropriate statistical techniques have not been de-
veloped yet. But, if this is the case, then one should not pretend that he/she is
conducting a precise quantitative study of performance of a telecommunication
network. A more drastic solution of this credibility crisis in the area of computer
simulation is to leave computer simulation to accredited specialists [17].

4 Final Comments

We discussed the basic issues related with credibility of simulation studies of
telecommunication networks. Then, the results of a survey of recent research
publications on performance evaluation of networks were used to show that the
majority of results of simulation studies of telecommunication networks pub-
lished in technical literature unfortunately cannot be classified as credible.

Of course, simulations of telecommunication networks are often computa-
tionally intensive and can require long runs in order to obtain results with an
acceptably small statistical error. Research on speeding up execution of simu-
lation of telecommunication networks is one of challenging problems which has
attracted a considerable scientific interest and effort.

One direction of research activities in this area has been focused on develop-
ing methods for concurrent execution of loosely-coupled parts of large simulation
models on multi-processor computers, or multiple computers of a network. So-
phisticated techniques have been proposed to solve this and related problems.
In addition to efficiently managing the execution of large partitioned simulation
models, this approach can also offer reasonable speedup of simulation, provided
that a given simulation model is sufficiently decomposable.

In the context of stochastic simulation, there is yet another (additional) solu-
tion possible for speeding up such simulation. Namely, collecting of output data
for sequential analysis can be sped up if the data are produced in parallel, by
multiple simulation engines running statistically identical simulation processes.
This approach to distributed stochastic simulation, known as Multiple Replica-
tions In Parallel (MRIP), has been implemented in Akaroa2 [14], a simulation



controller that is offered as a freeware for teaching and non-profit research ac-
tivities at universities; see www.cosc.canterbury.ac.nz/˜krys.
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