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tests have been proposed to determine how many observations to delete. The plummeting
cost of simulation, combined with uncertainties about the overall reliability of transient
methods, suggests revisiting the notion that deletion is essential. We consider this in a
framework of sequential simulation, where the simulation is run until a pre-specified accu-
; . . racy of the results is reached. Our results show that for run lengths required for commonly
Discrete event simulation . . R . . . .
Steady-state simulation used levels of accuracy, th_er_ehls no sqbstantlal difference in pom_t or interval es.tlmates of
Sequential simulation means due to deleting the initial transient for the models we consider. However, in sequen-
Transient deletion tial simulation, deleting the initial transient turns out to have considerable value in reduc-
ing the risk that the simulation stops too early, thus ensuring that the accuracy of the final
results is closer to that specified by the decision-maker.
© 2009 Elsevier B.V. All rights reserved.

Keywords:

1. Introduction

A standard part of simulation methodology for discrete event non-regenerative steady-state simulation is that data from
the initial transient phase of simulation should be deleted in order to reduce the bias in the final estimates. The underlying
assumption is that the distribution of the process being simulated may be changing over the transient phase (see, for exam-
ple [13, p. 488]), and thus including data from the transient phase would introduce bias in the results.

A large number of methods for selecting the number of observations to delete, and for testing if the system is adequately
close to “steady state”, have been proposed. Hoad et al. [11] list 42 methods, which they broadly classify as graphical meth-
ods, where the convergence of the process towards steady state is examined visually; heuristic methods; and those based on
statistical testing. Some of these proposals appear to have had limited testing, so their validity remains in question. It is also
noticeable that these methods have had little impact on commercial simulation packages, which usually only offer a user-
specified (fixed) deletion period.

With the steep decline in the cost of computing, the availability of large-scale computing resources via networks and the
web, and simulation software that can carry out multiple replications in parallel, such as Akaroa2, [3] (available at http://
www.akaroa2.canterbury.ac.nz/) it is now possible to collect large amounts of simulation output data in acceptable time
and at acceptable cost. Since the initial transient may now form a very small fraction of the total run, is it true that the influ-
ence of the initial state of the simulated system is quite limited? Given the uncertainty about the overall performance of
some of the deletion methods, has the balance shifted back in favour of not deleting observations i.e. a “brute force” ap-
proach? Or are there other problems which removal of the transient helps to control?

* Corresponding author. Tel.: +64 3 3642666; fax: +64 3 3642020.
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Fig. 1. Convergence of estimated relative error.

Sequential analysis of steady-state simulation output provides an attractive experimental framework for decision-makers
[13,18]. Rather than specifying a simulation run length in advance, only the statistical accuracy of the required results needs
to be specified. The simulation runs until this criterion is apparently satisfied.

Sequential simulation has the problem that some of the simulation experiments may stop with an insufficient number of
observations because, by chance, the required accuracy is apparently temporarily attained. Fig. 1 shows a plot of the conver-
gence of the estimated relative error (relative precision) for a single simulation experiment on an M/M/1 queue with a load of
o =0.9. The 10% relative error criterion is temporarily satisfied twice before the 100th checkpoint, whereas in fact about 250
checkpoints must elapse before that degree of accuracy is obtained.

As we shall show, the major effect of not deleting the initial transient is that, rather than having a substantial effect
on the bias of the point estimate, it reduces the average run lengths at which the stopping criterion is apparently sat-
isfied. Given that sequential simulation already has this problem of premature stopping, this argues strongly for the use
of a simple and reliable transient deletion method. As an aside, we note that Lee et al. [14] give some practical heuristics
that can guard against runs that are too short. However, in this paper the effect of discarding the initial transient data is
considered without applying these heuristics. Thus the coverage results in this paper appear worse than we can achieve
in practice.

We set out to answer a simple question: at the levels of accuracy that are usually specified in sequential simulation, can
the effects of deleting or not deleting the initial transient data be detected, and what are these effects?

Heidelberger and Welch [10] addressed a similar question when they proposed a unified approach for transient detection
and run length control, based on spectral analysis. The differences here are: we are using a simple method for detecting the
initial transient, thus avoiding possible correlation between the transient method and run length control; we concentrate on
coverage obtained in a practical experimental framework, rather than having run-length/coverage as just one of the outputs;
and we are using more replications for our coverage estimates (typically about 10,000 rather than 100). While we come to
the same conclusion, that a transient deletion method is needed, we come up with different, and we hope clearer, reasons
why it is needed in sequential simulation, and what the effects of it are.

2. Methodology

In sequential simulation the simulation stops when a pre-specified level of statistical accuracy of the results is apparently
reached. A common stopping method is to specify the relative precision of the estimate. This uses the ratio:
_ A1_4(N)

M=

)

where A4, _ ,(N) is the half-width of the confidence interval at the 1 — o confidence level for the estimate O(N) of the required
parameter 0 after N observations, i.e.:

A1 -2(N) = tara_o20(O(N)),

where t4 1 _ o2 is the (1 — «/2) quantile of the t-distribution, and df is the degrees of freedom implied by the method used to
estimate the variance of the estimate 0(N), a2(A(N)). If, for example, the stopping criterion is that the simulation stops when
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a relative precision of 10% (0.1) has been reached, the simulation will stop when ¢(N) < 0.1 for the first time. An alternative
stoping method is that of absolute precision which looks at the half-width of the confidence interval, 4, _ ,(N), only. Relative
precision is usually preferred as the value, or even order of magnitude, of the parameter 6 is usually not known before the
simulation starts. To save computational effort and time in sequential simulation the precision is usually calculated only at
specified intervals (“‘checkpoints”) as the sequential simulation progresses.

We will concentrate on coverage analysis of the estimated confidence intervals. Coverage analysis picks up biases in both
point and interval estimates and goes directly to measuring the quality of the results that the decision-maker can expect
with simulation. For example, if supposedly 95% confidence intervals of a specified relative precision (say 10%) are being
used as the stopping criterion, then what size confidence intervals are we actually getting? Are they actually 90% confidence
intervals? We use independent replications to measure the fraction of estimated confidence intervals that actually contain
the true value of the parameter of interest. While we will comment briefly on bias of the final point estimates, any bias due to
the initial transient could also be expected to be observed in reduced actual coverage.

The experiments were run using the Akaroa2 simulation package, using it in its single-processor mode. Thus each of the
approximately half a million simulation experiments required for this paper can be considered as being carried out on a sep-
arate processor, with an independent stream of random numbers. An automated method was used to determine the length
of the initial transient period. This first uses a heuristic proposed by Gafarian et al. [5] to decide when to start testing for
stationarity. Its use in a sequential context is described in detail in Pawlikowski [18]. In this heuristic, the length of initial
transient period is first taken to be over when the sequence has crossed its running mean 25 times. Then a sequential version
of Schruben’s test [20,21,7] is used to test for stationarity. If the null hypothesis of stationarity is rejected, the length of the
potential transient period is doubled and the test repeated [18]. Comparisons with a limited range of other transient deletion
methods can be found in [6,17], which show that this method, although simple, does appear to work well, at least for basic
queueing models. The method usually picks short transient periods. The use of a conservative, simple method turns out to
suit our conclusions well.

Sequential spectral analysis, a modification of the method proposed by Heidelberger and Welch [9] and specified in [18],
was used to estimate the confidence interval width. We have found that this method gives accurate confidence intervals,
especially for highly correlated data, such as waiting times in highly loaded queues [4,16]. Since spectral analysis is not
as well known a confidence interval estimation technique as, for example, Batch Means, all the models below were also
run using the automated version of the Batch Means technique in Akaroa2 [18]. These results were entirely compatible with
our conclusions.

For this study a further automated sequential framework, for estimating coverage, was essential as producing just one of
the estimates of coverage involved up to 30,000 independent replications, each using thousands of observations. This frame-
work used the following two rules: Since we are estimating large binomial probabilities, coverage estimation starts only after
a minimum number (say 200) of “bad” confidence intervals (confidence intervals not containing the actual value of the
parameter 0) have been recorded. Then analysis of coverage continues until the absolute precision (half-width of the confi-
dence interval) of the estimated coverage reaches a specified level, say 0.005. Further details of this coverage estimation
methodology are described in [19].

Experiments were conducted for waiting times in a representative range of queueing models: M/M/1, M/D/1, and M/H,/1
with a coefficient of variation of the service times set to /5. We start the experiments from the empty and idle state, since
that is the setting most often used in practical simulation.

3. Results

The experiments were replicated until a 95% confidence interval for the estimated coverage was reduced to a half-width
of 0.005. For the worst case (M/H;/1, with a load of 0.9 and relative precision of 5%, and the transient not deleted) this in-
volved 14,464 replications, each involving about 2,000,000 observations. Separate experiments were run for the case of dele-
tion, and of no deletion of the transient data. The experiments were conducted as paired comparisons, with the same starting
position for the random number stream used for both a deletion and no deletion replication. This can be seen in the way the
deletion and no deletion lines mimic each other in each of the graphs in Figs. 2 and 7.

3.1. Bias

We first wish to show that for the run lengths required for relative precisions of 5% or 10%, the effect of deleting or not
deleting the initial transient on the estimated mean waiting time is very small indeed. For one of the models, M/M/1, this can
be done theoretically. We can calculate the expected waiting time of the Nth arriving customer, for N=1, 2, ..., T, and hence
the average waiting time over all the observations in the transient period, using the Markov chain technique described in
Kelton and Law [12]. Table 1 shows the results of including these observations in the estimated mean waiting time - i.e.
not deleting them.

The values in Table 1 were calculated as follows. We take the length of the initial transient period to be T, the aver-
age number of observations deleted in the experiments. For a queue with a load of 0.9 this was observed to be 726
arrivals. By Kelton and Law’s method, the average mean waiting time of the first 726 arrivals is 7.8132. After the
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Table 1

Theoretical effect of not deleting the initial transient for the M/M/1 model.
P Average Average number of Average mean waiting Average mean waiting time of Fraction of the steady-state

transient period observations (Np,) time of the first T arrivals the first T plus Np; arrivals mean waiting time (%)
(T)

0.1 367 50,050 1110 1111 100.0000
0.2 321 37,231 .2496 .25 100.0000
0.3 309 35,936 4264 4286 100.0000
0.4 311 39,309 .6629 .6666 100.0000
0.5 321 47,281 .9907 .9999 99.9999
0.6 344 62,596 1.4771 1.4999 99.9999
0.7 386 95,886 22722 2.3330 99.9999
0.8 475 187,359 3.7979 3.9995 99.9872
0.9 726 654,449 7.8132 8.9987 99.9854

Table 2

Bias due to not deleting the initial transient. M/D/1 with 10% relative precision.
P Number of Mean waiting time with Mean waiting time without Difference Relative t-Value P

replications deletion deletion difference

0.1 9636 .05582 .05573 .00009 .0016 2.1 .036
02 8612 12479 12473 .00006 .0004 .89 376
03 8834 21361 21325 .00036 .0017 3.94 <1073
04 9253 33216 33144 .00072 .0022 5.51 <1073
0.5 9491 49795 149663 .00132 .0027 6.88 <1073
0.6 10,010 .74586 74347 .00239 .0032 8.64 <103
0.7 10,585 1.15768 1.15390 .00378 .0032 9.36 <1073
0.8 10,979 1.98079 1.97449 .00299 .0015 9.68 <1073
09 12,716 4.44501 4.42805 .00630 .0014 13.38 <103

Table 3

Bias due to not deleting the initial transient. M/H,/1 with 5% relative precision.
P Number of Mean waiting time with Mean waiting time without Difference  Relative t-Value P

replications deletion deletion difference

0.1 10,926 333195 333211 —.000016  —.00005 —.42 676
02 11,389 749427 749290 .000137 .00018 1.70 .089
0.3 10,979 1.28471 1.28459 .000128 .0001 .85 395
0.4 11,270 1.99699 1.99674 .000245 .00012 1.09 277
05 11,110 2.99509 2.99435 .000735 .00025 2.21 .027
06 11,038 4.49255 4.49146 .001096 .00024 2.19 .028
0.7 11,860 6.98251 6.98161 .000902 .00013 1.16 247
0.8 11,348 11.9678 11.0659 .00193 .00016 1.45 147
09 11,171 26.9159 26.9084 .00745 .00028 2.66 .008

transient period, we collect an average of Np. = 65449 observations. The subscript Del indicates that this value comes
from experiments where data from the transient period has been deleted. If we assume that these are steady-state
observations, the average waiting time estimated over all 726 + 654,449 observations will be 8.9987, resulting in a dif-
ference of less than .015%.

So the theoretical analysis suggests that there is little bias in the mean waiting time detectable at these run lengths.

Now from the experimental data we compare the observed mean waiting times with deletion of transient data, with
those where the transient results have been included. To save space we give two sets of results only, from opposite ends
of the range of models considered, for M/D/1 with 10% relative precision and M/H,/1 with 5% relative precision. When ana-
lysed with the usual t-test for differences of means, there were no significant differences between the mean waiting times at
all, in spite of the large numbers of replications. Some significant differences were obtained when the paired comparisons
approach was exploited, and the t- and P-values reported in Tables 2 and 3 are for paired-comparisons t-tests. For these, rep-
lications had to be discarded from the larger of the two data sets. (We note that, for all cases studied, this was the set without
deletion. So it takes more replications to estimate the relative precision to a given accuracy if the initial transient is not
discarded.)

Tables 2 and 3, and the other results not listed here, show that there is a small bias when the data from the initial tran-
sient is included, (columns 5 and 6). Not surprisingly the bias tends to decrease with longer runs (either resulting from more
variable models, or smaller required relative precision.) The mean waiting time estimated without removing the initial
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Fig. 2. Achieved coverage with sequential stopping times.

transient is slightly smaller than that produced if a transient period is deleted, which is not surprising considering that the
simulations start from an empty and idle state. For 5% relative precision, the bias is very small and when measured in terms
of a t-test the results are almost all not statistically significant.

3.2. Coverage analysis

We now turn to comparing the coverages when data from the transient period is deleted, to those obtained when it is not.
The graphs in Fig. 2 plot the average coverage (together with 95% confidence intervals) from simulating the waiting times in
the models specified, with deletion of transient data (solid lines) or no deletion (dashed lines). Note that the confidence
intervals for average coverage all have the same half-width, 0.005. So the graphs show the actual coverage that was achieved
when the required coverage was set to that of a 95% (0.95) confidence interval having a relative half-width (relative preci-

sion) of either 10% (left-hand graphs) or 5% (right-hand graphs).
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From the graphs in Fig. 2 it can be seen that deletion of the initial transient does appear to produce some effect on cov-
erage, especially for M/D/1, where the run lengths are short. The effect reduces with: the variability of the model, and the
accuracy of the precision, to the point where in a single experiment the reduction in coverage would no longer be deemed
to be large.

Thus for M/H,/1 at 5% precision (the longest runs) the effects are very small. In all cases the no-deletion coverage in-
creases towards that produced when initial transient data are deleted, as the run length increases.

However, the important point is that almost all the differences in Fig. 2 can be explained by the fact that the average run
lengths without deletion are uniformly shorter than those with deletion. It might be thought that unless the transient period
is deleted, a sequential simulation will run substantially longer on the average than a simulation with deletion, due to the
bias produced by inclusion of the transient results. But for all the models in this study it turns out that the opposite of this is
true.

Tables 4-6 give the average run characteristics over the 10,000 to 14,000 replications, for 5% relative precision. Those for
10% relative precision (not included here) show similar effects. The subscripts Del and NoDel refer to the measurements

Table 4
Run lengths and coverages for M/D/1 (5% relative precision).
Deletion No deletion
P Average number of  Coverage Average number of Coverage Difference in average Coverage (pj,p,) corrected for Difference
observations (Npe) (Pper) observations (Nnopetr)  (PNopel) no. of observations difference in no. of observations  Py,pe; — Ppel
0.1 30051 .942 26,187 933 3864 .950 .009
0.2 20363 .946 17,483 935 2880 .954 .011
03 18539 .946 15,948 934 2591 .952 .012
04 19507 .943 16,808 929 2699 .948 .013
0.5 23061 .938 20,123 931 2938 .948 .007
0.6 30337 .940 27,036 929 3301 .944 .011
0.7 46368 935 42,360 .930 4008 .942 .005
0.8 89971 931 85,376 924 4595 932 .017
0.9 318054 931 313,712 927 4342 929 .004

Table 5
Run lengths and coverages for M/M/1 (5% relative precision).
Deletion No deletion
P Average number of Coverage Average number of Coverage Difference in average Coverage (pj,p,) corrected for Difference
observations (Nper) ~ (Pper) observations (Nnoper) ~ (Pnobet) no. of observations difference in no. of observations  Pipe; — Ppel
0.1 50050 .937 45,667 .930 4383 .942 .005
0.2 37231 .939 33,502 .933 3729 .946 .006
0.3 35936 .938 32,385 .933 3551 .946 .008
04 39309 .936 35,623 .928 3686 942 .006
0.5 47281 .932 43,529 927 4022 938 .006
0.6 62596 .932 58,372 .926 4224 936 .006
0.7 95886 .930 90,900 .929 4896 .936 .006
0.8 187359 .930 181,939 927 5420 931 .001
0.9 654449 927 644,927 927 8522 929 .002

Table 6
Run lengths and coverages for M/H,/1 (5% relative precision).

Deletion No deletion

P Average number of = Coverage Average number of Coverage Difference in average Coverage (pj,p,) corrected for Difference

observations (Npe) (Pper) observations (Nnoper)  (PNobel) no. of observations difference in no. of observations  Pyope; — Ppel

0.1 152500 934 147,897 .929 4603 934 0

0.2 138604 931 134,369 929 4235 933 .002
0.3 146828 .933 142,328 .930 4500 934 .001
0.4 164688 .932 160,280 .930 4408 934 .002
0.5 198206 933 192,687 928 5519 932 —.001
0.6 258459 932 252,428 929 6031 932 0

0.7 379124 928 370,704 926 8510 929 .001
0.8 692801 931 681,722 926 11,079 928 —.003

0.9 2223173 931 2,206,309 933 16,864 934 .003
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where data from the transient period has been deleted, and those where it has not, respectively. Np,, is the average number
of observations collected after those in the transient period have been discarded.

We note from Tables 4-6 that the average run lengths without deletion (column 4) are always shorter than those where
the initial transient data are deleted (column 2), by a reasonably fixed amount (column 6) that tends to increase with load
and variability of the model.

We wish to show that almost all the differences between the pairs of graphs in Fig. 2 can be explained by the shorter run
lengths which occur when the initial transient data are not deleted. We do this first theoretically by approximately correct-
ing the coverage (pnoper) in Tables 4-6 to account for the shorter run lengths. As with any correlated sample, the variance of
the sample mean waiting time is given by (see, for example, [13, p. 230]):

2

o (W) =T <1 +2Y p —j/N)), (1)
=

where ¢, is the steady-state waiting time variance, N is the number of observations, and p; is the lag-j autocorrelation. For
large values of N, the term in parentheses only depends weakly on N, as the autocorrelations p; usually decay away expo-
nentially. In fact for large N, (1) is often written as [1]:

N 2 o
o (W) zi‘?’(l +22pj>,
=

Thus if we use the subscripts Del and NoDel to indicate the variances of the sample mean waiting time and the number of
observations with and without deletion, then:

T3t(W) /G opet(W) ~ Napel /Noer 2)

Since the estimated coverages are the results of thousands of independent replications, we use a normal approximation. The
first step is to convert the coverage into points on a normal distribution. For a coverage of pnoper, the area to the left of the
right hand tail on a standard normal distribution is (1 + pnoper)/2. Thus the corresponding point on the normal distribution (z
score) is F~1((1 + pnoper)/2), where F is the standard normal cumulative distribution function. From (2) this is scaled by (Npej/
Nnopel)/?, compensating for the shorter run length without deletion, to produce a wider confidence interval, from which in
turn we can re-estimate the coverage from:

Phapet = 2F ((Noer/Nyove)'*F ™" (1 + Proper)/2)) — 1

In the last two columns of Tables 4-6 this correction is applied to the coverage without deletion, py,pes, to produce an estimate of
what the coverage would have been, had the run lengths been longer. It can be seen that except for two cases (out of 27), both
within the margin of error, the corrected coverage without deletion (p}p,,), is greater than the coverage obtained with deletion
of the transient period, (ppe). If a relative precision of 10% is used, all the corrected coverages are greater than the coverage with
deletion. (The results for these are not shown to save space.) While it would be unwise to put too much emphasis on the mag-
nitude of the changes, since these are based on average run lengths, it appears possible that the differences in run lengths ac-
count for the differences in coverage. We next give our explanation why the run lengths without deletion are shorter.

We have noted that the average run lengths without deletion of transient data are uniformly shorter than those when
deletion is used. Our conjecture is that this is because, when the system starts from the idle state, the results measured dur-
ing the transient period are not only biased but also have low variance. This leads to optimistic estimates of the relative
precision and hence shorter runs.

Empirical CDF's, with and without Deletion
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Fig. 3. Run length CDF's for M/D/1, p = 0.3, 5% relative precision.
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Empirical CDF's with and without Deletion
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Fig. 4. Run length CDF’s for M/M/1, p = 0.6, 5% relative precision.
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Fig. 5. Run length CDF's for M/H»/1, p = 0.9, 5% relative precision.

Figs. 3-5 show the cumulative distribution of run lengths for representative models, covering the range from the shortest
average run length, M/D/1, with a load of 0.3, to the longest run length, M/H,/1, with a load of 0.9. (For clarity only the por-
tion up to the 20th percentile of this graph is shown.)

What is noticeable is that in all the graphs the difference in distribution occurs very early on, with the 10th percentile of
no-deletion runs occurring significantly earlier than that for the runs with transient data deletion, and that there is very little
additional difference in the distributions thereafter (the difference in height between the two distributions remains constant
up to about the 95th percentile.)

So other things being equal there is a close-to-constant reduction in the run length due to not deleting the data from the
initial transient. Our explanation for this is that when starting from empty and idle, the observations collected during the
transient period have lower variance than those from the “steady state” portion of the simulation. This produces an under-
estimate of the variance of the sample mean waiting time, which in turn causes premature stopping. For the M/M/1 model
we can support this explanation by calculating the variance of the waiting time of the Nth arriving customer, this time using
an extension of the Markov chain technique of Kelton and Law.

Fig. 6 shows the variance of the waiting time of the Nth arriving customer at an M/M/1 queue with a load of 0.9, converg-
ing towards its steady state value of 99.0 (using an arrival rate of / =0.9 and a service rate of x =1.) The formula for this:
1/(u— 2)* — 1/u2, can be derived from the exponential distribution for the time in system (see, for example [8, p. 65]). This
is plotted out as far as the 726th arrival, since that was the average number of observations deleted (Table 1).

Thus during the transient period, the contribution towards the long-run estimate of the variance of the waiting time is
biased downwards. From the theoretical formula (1) for the variance of the sample mean waiting time, it follows that since
the estimate of the variance of the waiting time, o2, is too small, the confidence interval for the sample mean waiting time
will appear smaller than it actually should be, and the run will finish early. Thus while the bias in the mean due to the initial
waiting times disappears in the long run length, the sequential run length is reduced if the initial transient is not deleted.
Since the effect on the variance of the sample mean is a scaling rather than an additive effect, it is only reduced proportion-
ately, but not eliminated, by setting the relative precision to smaller values.
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Fig. 6. Waiting time variances during the transient period.

To remove the effect of reduced run lengths when the transient data are not deleted, and the general variability produced
by sequential stopping, we ran the same models with fixed run lengths for each case. The run lengths have been set at the
theoretical number of observations required to reach the required relative precision. The number of observations can be cal-
culated, for M/G/1 queues, from the equations in Daley [1]. From Eq. (28) there, the variance of the sample mean waiting
time, for a large sample, is also given by:

20y = O (Ltp AEW) - EWEW?)
N\T=p" (1= p)(EW? —EWEW)) )’

Then for a 95% confidence interval to have a relative precision of say 0.05, we need P(|W — E[W]| < 0.05E[W]) = 0.95 or
0.05E[W]/a (W) = 1.96, from which we can solve for the number of observations required, as listed in Table 7. The moments
of the waiting time, E[W], EflW?] and E[W?] were found by differentiating the Pollaczek-Khinchine transform expression (see,
for example [8, p. 237]) using Maple. For M/D/1 the values of N are the limits of those for M/E;/1 as k — oo.

The coverages for the same set of models as before, but with fixed run lengths from Table 7, are plotted in Fig. 7. As in
Fig. 2, solid lines connect the coverages where transient deletion was used, and dashed lines the coverages where there
was no deletion. Note that as the differences are now much smaller, the vertical scales have been magnified by a factor
of 2.5 over those used in Fig. 2.

From Fig. 7, now that we have removed the effect of premature stopping, we find there are no statistically significant dif-
ferences in coverage for the 54 comparison experiments (nine traffic intensities, three models, and two levels of relative pre-
cision) as can be seen from the way in which the experimental confidence bands overlap at each point in the graphs. In 26
cases the coverage with deletion of initial transient data was greater than that for no deletion, and in 28 cases it was less. We
could not find any significant differences between the coverage at 10% relative precision, and that at 5%. Thus fixing the run
lengths at appropriate numbers removes all detectable effects of deleting or not deleting initial transient data. We can con-
clude that the “brute force” approach to the transient problem works at these run lengths, and has in fact worked by the run
length required for an accuracy of 10% relative precision.

Table 7

Number of observations for a specified relative precision.
p M/D/1 M/M/1 M/H,/1

10% 5% 10% 5% 10% 5%

0.1 6639 26,559 11,671 46,687 37,491 149,964
0.2 4401 17,607 8547 34,190 34,094 135,376
03 4007 16,028 8276 33,105 36,085 144,343
0.4 4268 17,073 9134 36,537 40,977 163,908
0.5 5122 20,488 11,140 44,562 49,556 198,226
0.6 6936 27,744 15,110 60,441 64,880 259,521
0.7 10,976 43,904 23,677 94,710 95,948 383,794
0.8 22,409 89,637 47,443 189,775 177,674 710,696

0.9 82,523 330,093 170,268 681,072 577,022 2,308,090
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Fig. 7. Achieved coverage with fixed run lengths.

3.3. Does initial loading support our explanation?

Since it appears that collecting observations from when the system starts from empty and idle causes lower variance esti-
mates, shorter runs, and hence poorer coverage in these models, what happens if we change the initial condition? That is, if
the system starts from a high initial state, we might expect that the variance contribution during the transient period should
be large, and hence run lengths will be longer and coverage better if our explanation is correct. That broadly is true, although
the explanation is confused by the fact that for some combinations of load and initial loading the convergence of the variance
to its steady state may now not be monotonic, unlike that shown in Fig. 6. High load and high initial loadings is one class
where this occurs. So we give the results for only one system, and draw some conservative conclusions. Fig. 8 plots the
5% relative precision coverages with deletion (solid lines) against the coverages produced when the system starts with
10, and 100 customers present (and no deletion), (dashed lines) for an M/M/1 queue. Table 8 gives the average run lengths
for these cases, and for the case of no deletion. The run lengths for 10 initial customers are mostly higher than those for no
deletion. Transient deletion appears to produce superior coverage to that from 10 initial customers, but most of the
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Fig. 8. The effect of initial loading. M/M/1 5% relative precision.

Table 8

Average run lengths M/M/1 model 5% relative precision.
P Idle and no deletion Idle with deletion 10 Customers initially (no deletion) 100 Customers initially (no deletion)
0.1 45,667 50,050 83,445 2,959,875
0.2 33,502 37,231 40,694 1,346,648
0.3 32,385 35,936 34,494 864,062
0.4 35,623 39,309 36,384 631,357
0.5 43,529 47,281 43,355 505,437
0.6 58,372 62,596 57,884 414,081
0.7 90,900 95,886 90,677 358,764
0.8 181,939 187,359 181,226 357,446
0.9 644,927 654,449 654,335 718,170

confidence intervals overlap. 100 initial customers produces much higher coverages, but this is caused by extraordinary run
lengths (up to 64 times longer than those where the system starts from empty).

The bias in the mean due to initial loading should be easily wiped out in runs of these lengths. Hence given that, the ef-
fects do appear compatible with our conjecture that it is (now over-) estimated confidence intervals, caused by the abnor-
mally high contribution to the variance from the early observations that are causing the higher run lengths and hence the
gains in coverage. We would expect the proportional effect of this to be highest when the load is small, as in this case the
variance of the remainder of the run should be small, and this is exactly what happens.

Initial loading is often suggested as an alternative method of dealing with the initial transient. The results we have are
compatible with there being some benefit in terms of coverage, but the results for initial loadings of 100 customers show
that in sequential simulation this may come at the price of excessively long runs. Given the possible non-monotonic conver-
gence of the variance (and hence the difficulty in uniformly supporting our explanation) and the small class of models con-
sidered here, we do not draw more extensive conclusions at this time.

For 100 customers present initially there are no confidence bands on the first six points, loads = 0.1, ..., 0.6 in Fig. 8. This
is because we could not obtain 200 “bad” confidence intervals before these runs were stopped after 30,000 independent rep-
lications, and thus we could not estimate the coverage, which is close to 100%, to our set standard.

4. Other experiments

Experiments were also conducted for response times (times in system) for the same set of models, and the response times
in a simple computer network model as shown in Fig. 9. Here after processing, a random fraction of jobs p;, p, return to Disk
1 or Disk 2, respectively. A fraction ps; leave the system. For the results in Fig. 10 the mean CPU service time is 6, the mean
service time for each disk is 14, p; = p, = 0.4, all distributions are negative exponential, and the source rate is set to give loads
at the CPU ranging from 0.1 to 0.9.

For the computer network model the estimated coverage without deletion of transient data (dashed line) is always lower
than that with deletion, (solid line) significantly so for 10% relative precision. But for 5% relative precision coverages are very
close to those in which data from the transient period has been deleted. This is presumably due to the usually positive auto-
correlation in the input process produced by the feedback of jobs resulting in very long run lengths [15]. The results of all of
these models were quite consistent with those observed for waiting times: poorer coverage if transient data are not deleted,
but with this poorer coverage being entirely explainable in terms of shorter run lengths, and a probable explanation for the
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Fig. 10. Effect of transient deletion on the CPU queue response time coverage.

shorter run lengths being lower variance of the observations collected during the transient period. Fixed run-length exper-
iments were not tried as the expected run lengths are unknown.

5. Conclusions

At first sight, from Fig. 2, it appears that, for sequential simulation, deleting the initial transient data does produce a direct
improvement in the coverage of the results from sequential simulation. The coverages obtained without deleting the initial
transient data are usually worse than those where a relatively small number of initial observations have been deleted. There
is some tendency for the coverage to get better as the relative precision is reduced from 10% to 5%, although this is not a
uniform effect. So an initial conclusion might have been that in sequential simulation removing the initial transient data di-
rectly improves the coverage and hence should be done for that reason, and that improved coverage cannot necessarily be
obtained by using a requirement for smaller confidence intervals to increase the run length. In other words it appears that
the “brute force” approach does not always work.

However, when we fix the run-lengths to the theoretical numbers required for commonly used levels of relative precision
(Fig. 7), the direct gains in reduced bias and improved coverage achieved by deleting the initial transient data are extremely
modest. For the range of models considered, there was almost no detectable difference between the means and the coverages
of the results provided the same run length was used. So it appears that at these run lengths the effects of the initial transient
have indeed been “washed out”. So if we can ensure that the runs are long enough it appears to be possible to rely on high-
precision (i.e. small) confidence intervals in order to guarantee the accuracy of the final results. This might be helpful in some
situations, for example those for which transient deletion methods have not been validated, or where transient deletion
methods give highly variable results.

Our experiments show that in sequential steady-state simulation, deleting the initial transient data can provide consid-
erable additional protection against premature stopping, apparently by ensuring that the variance of the sample mean is
more accurately estimated. And it is this which improves the coverage to closer to the specified level. This happens even
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when a simple and conservative method, based on a heuristic and Schruben’s test, is used. Since premature stopping and
hence the production of overly optimistic confidence intervals is a chronic problem of sequential simulation, this is a valu-
able contribution. It appears that initial loading of the system can have a similar, although less predictable effect.

The results also emphasise the need to test new proposals for transient deletion methods for more than how they do on
mean values - at least variances and preferably the entire distribution of the process of interest should be considered. A
method which does this is reported in [2].
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