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Abstract

Numerous techniques have been proposed for detecting the length of the initial transient in steady-state
simulations of queueing-type processes, for examplewhen studying performance of telecommunication
networks and protocols. Unfortunately, these techniques behave quite badly when applied in practical
simulation experiments, especially when simulating heavily loaded systems. We assessthe performance
of two of the most successful methods for estimating the length of the initial transient period, based on
statistical tests developed for testing stationarity of time series proposed by Schruben et a [16, 15] and
Y Uicesan [18]. The performance of these methodsis compared with the theoretical relaxationtimein a
classof M/E./1 and M/H,/1 queueing systems. We also study the influence of data collected during the
initial transient phase on the quality of the final simulation results. Two methods of simulation output
dataare considered: the method of Spectral Analysis, as proposed by Heidelberger and Welch [6], and
asequential version of Independent Replications.

Introduction

In stochastic discrete-event simulation executed for studying steady-state performance of a system,
the initial data in the primary data stream are not representative of the steady-state behaviour of
the system because of bias introduced during the initial transient or warm-up phase characterising
the initial system’s behaviour. The initial transient phase is simply the period during which the
system settles into its steady-state behaviour. The most commonly used technique to remove the
“bias of initialisation” introduced into the output data by the initial transient phase is referred to as
data truncation. The biased data is smply discarded and the remaining unbiased data analysed. In
the method of Independent Replications every one of the multiple replications within a simulation
experiment contains biasintroduced by itsinitial transient phase. There are problemswith the coverage
performance of single replication methods (Batch Means, Spectral Analysis, etc). As well as this,
recent results suggest that the difference in the theoretical efficiency between the methods based on
single and multiple replication is not as great as previously thought [17]. Therefore we decided to
seek away to apply the method of Independent Replications in afully automatic procedure for output
data analysis in steady-state simulation. The reported research project investigated using the length of
the initial transient period to determine the length of each replication in an Independent Replications
simulation experiment. This makes accurate detection of the end of the initial transient phase even
more important than is normally the case. Normally, it is sufficient to remove enough data such that
the bias introduced by the initial transient phase is removed, so a conservative approach that removes



more than enough is acceptable. However, when the intent is to implement the method of 1ndependent
Replications sequentially, automatically stopping the simul ation when the precision of estimatesreaches
the required precision, or when one tries to make use of data collected during the initial transient to
determine the replication length, it becomes important to determine the length of the initial transient
phase as accurately as possible.

A number of different methodsto assessthe length of thetransient period in asteady-statesimulation
has been proposed. For analytically tractable systems it may be possible to calculate an estimate of
the expected length of the initial transient phase. However, for most systems of interest this is not
possible. One possibility isto find an upper bound of the length of the initial transient phasefor aclass
of systems. This method is not very reliable as different systems and even the same system with a
different sequence of random numbers may vary widely in how long they remain in atransient state.

Rather than ssmply deciding a priori how long the transient period of a simulation will be we
may use a heuristic based on the observed simulation output data to estimate the length of the initial
transient phase. Such heuristicsare surveyedin [11]. Our experience has shown that no heuristic can be
considered relatively robust and those that we have studied have frequently produced inaccurate results.
In quantitative stochastic simulation more powerful techniques should be applied. Special stationarity
tests, used to test if a simulated process has reached steady-state, may be applied to test whether the
data contains significant bias due to theinitial transient phase. Two methods that apply such testsin an
iterative manner to obtain estimates of the length of theinitial transient phase are detailed in Section 2.

1 Analytical Measuresof thelnitial Transient Phase

Once we have some method or procedure that is designed to estimate the length of the initial transient
phase we need to assess its accuracy in some way. As noted above there exist analytical methods by
which we can calculate an estimate of the length of the initial transient phase for some analytically
tractable systems. Two such measures have been studied: a relaxation time, with a formula which is
valid for single server queueing systems (GI/G/1), see Section 1.1, and the exact expected waiting time
of the nth customer, which can be calculated exactly for M/E,/1 systems using Heathcote and Winer's
formula [5] and following [9], see Section 1.2.

1.1 Reéaxation Time

It has been shown that the rate at which mean queue lengths or mean delays tend to their steady-state
is, after some period of time, dominated by a term of the form exp(—t/7,.), where 7, is called the
relaxation time of the queue [11].

It has been postulated that the initial transient phaseis over after thetimets = —7,. In 3, where 3 is
the permissible relative residue of theinitia state, 0 < 5 < 1. Assuming 5 < 0.02, at t = 47, we find
that the queue characteristics, such as mean time spent in the queue for a customer, are within 2% of
their steady-state values. In other words, output data collected from that point of time should be biased
by theinitial state by lessthan 2% [11].

Odoni and Roth [10] obtained an approximation to the relaxation time of the mean queue length
in Markovian queueing systems based on the coefficients of variation of the interarrival and service
times, 7. As noted, the time taken for a system to fall within 2% of steady-state is 47, time units.
Jackway and de Silva[7], who presented a dlightly modified version of the Schruben test, convert the
relaxation time estimate to the number of observed service completions needed to reach steady-state.
Their approximation involves dividing the required relaxation time, 4r,, by 1/, (the mean service
time). For the M/M /1 queue C4 = C% = 1 and cancelling 1. reduces to a formula for the length of



theinitia transient phase, 7,,, in M /M /1 queueing systems. It should be noted that this approximation
assumes that the server is busy continuously.
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where p isthe system load and 7,, is the number of service completions.

It is noted by Odoni and Roth [10] that this relaxation time estimate of the length of the initia
transient phase is a gross lower bound. This stipulation is reinforced by Anderson [1] who suggests
that the time for a real system to approach steady-state is larger than the relaxation time. Anderson
claimed that theoretically systems converge to their steady-state at the rate (e —**), while empirical
convergence to steady-state of the first kind (mean value) occurs at the rate s(%), and empirical
convergence to steady-state of the second kind (variance) occurs at the rate = ( % ) [1].

The trandation from relaxation in time to relaxation in observed service completionsis an approx-
imation at best since it assumes that the server will aways be busy. The greater the loading or the
utilisation of the system the more likely this assumption is to hold. The inaccuracy introduced by this
approximation is acceptable asit will produce slightly longer relaxation periods in terms of simulated
time, erring on the side of safety. Thisis because of the assumption that the server will always be busy.

1.2 Expected Waiting Time

A possible alternative to the relaxation time as an analytic measure of the length of the initial transient
length could involve the number of observations required for some parameter of the system (at a given
loading) to become sufficiently close to its steady-state mean value. This estimate could be obtained
by studying, for example, the expected average delay of the first n customers. The mean waiting time
of the nth customer in an M/M/1 system when started from an empty-and-idle state is given as:

EW, =Y j 'ES], ()
j=1

where S; isthe jth partial sum of random variablesindependently and identically distributed as the
difference between a service time and an interarrival time, and

st = [ ydp(s, <) 3
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see Heathcote and Winer [5]. In particular
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Similar formulae are given in [5] for the M/D/1 and D/M/1 queueing systems.

With these formulae we are able to calculate the point at which the actual expected value of a
parameter comes within a given tolerance of the steady-state value for the first time. This point may
then be used as an estimate of the length of the initial transient phasefor that parameter. Figure 1 shows
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Figure 1: Expected waiting time of the nth customer in an M/M/1 queue; p = 0.9.

afigure goes here

Figure 2: Comparison of estimators of the length of the initial transient phase for the M/M/1 queue.

how the expected waiting time of the nth customer tends towards the steady-state value, EW ., for an
M/M/1 queue at aloading of 0.9.

Figure 2 shows a comparison between the relaxation time estimate (measured by the number of
service completions) and various versions of the expected waiting time estimate. Each curve for the
expected waiting time estimate is determined by assuming different values of relative “closeness’ of
EW, to EW, for finding

EW, — EW,
— <
P <9 ©)

for e = 0.01,0.05,0.1. From this graph it may be seen that when the expected waiting time is
required to be with 0.5% of the steady-state value it is very close to the curve given by the relaxation
time which specifies a greater tolerance of 2%. It may also be seen that as the tolerance is lowered to
0.1% the curve moves higher than the relaxation time. This showsthat if we want to estimate the length
of the initial transient phase more safely we should require the initial transient detector to produce
values greater than that provided by the relaxation estimate.

Unfortunately, although the convergence of the expected waiting time to steady-state gives an intu-
itively more understandable basis for estimating the length of theinitial transient phaseit isanaytically
tractablefor M/E,/1 systemsonly. Therelaxation time estimateis known for any single server queueing
system of GI/G/1 type. Because of this, for the rest of this study the relaxation time estimate, translated
into the number of service completions, is used as the reference when evaluating the quality of various
initial transient phase detectors.

no = rrl!n{n :

2 Statistical Tests

Asmentioned, the length of theinitial transient phase has traditionally been determined using different
heuristic rules. For the purposes of this study the heuristic labelled R5 in [11] is used:

the initial transient period is over after ng observations x1, x2, z3, . .., £y, Crosses the
mean X (no) k times, where X (no) = = ¥1° ;.

This rule is sensitive to the value of &, the number of crossings of the mean required. Too large
avalue will usually lead to an overestimated value of ng, regardless of system'’s utilisation, while too
small value of & can result in an underestimated value of ng in more heavily loaded systems. Results
of previous studies [11] have supported the selection of & = 25, recommended in [4].

More precise measures of the length of the initial transient could be obtained by using statistical
tests invented to test the stationarity of data sequences. A few such techniques for determining the
length of the initial transient phase have been developed, of which two are studied in the following



Sections. Each operates in a hypothesis testing framework, formally testing the null hypothesis that
thereis no initialisation bias in the output mean against the alternate hypothesis that initialisation bias
in the output exists.

2.1 Schruben Test

Thefirst stationarity test was proposed by Schrubenin [14] and improved on by Schruben et al.in [16].
It is used to test the hypothesis that a sufficient number of initial transient data have been (or have not
been) discarded based on a standardised time series. The statistic,

T

45 k. = =

= TSR ] 2 R X ) — X () (7)
and Var(T) are calculated from the most recent observations collected and compared with the corre-
sponding value from the Student-¢ distribution. If the sequence of tested data cannot be considered
as stationary, it is discarded and the next sequence of observations tested. This process is repeated
until the test determines that the system has reached steady-state or some predefined upper limit on the
simulation length is reached.

afigure goes here

Figure 3: Sequential analysis of the length of theinitial transient phase.

The Schruben test requires foreknowledge of the steady-state variance of the system which is not
normally available when the test is applied because the systemis still initsinitial transient phase. The
Schruben test solves this problem by estimating the steady-state variance over the latter portion of the
collected data. Thisis done on the assumption that this latter portion of datais more representative of
the steady-state behaviour of the system, thus giving a better estimate of the steady-state variance. The
data used for calculating the test statistic and an estimate of the steady-state variance are contained in
the test and variance windows, respectively. The relative sizes and positions of the test and variance
windows used by the method are variable and affect the performance of the test. The effectiveness of
the test is strongly dependent on the effectiveness of the variance estimator used [11, 16].

In the original version of the Schruben test it is assumed that the data that is tested for stationarity
is the most recently collected data. This assumption creates the problem mentioned above where an
estimate of the steady-state variance of the system is required whilst till in the transient phase. As
has been observed, the performance of the Schruben test is highly dependent on the variance estimator
used [11, 16], therefore to improve performance of the test as a whole the accuracy of the variance
estimation process should be improved.

With this idea in mind a modification proposed is to relax the constraint that the test is unable to
look into the“future”. It isnoted that relaxation of this constraint introducesthe need for the simulation
system to be able to store and reuse the data that is collected while determining the length of the initial
transient phase, but not discarded as part of theinitial transient phase. Theneedto storeall dataincreases
the memory resources required by the procedure when long initial transient phases are encountered.
This new version of the Schruben test uses two separate windows. The leading window, called the
variance window, contains data from which the steady-state variance of the means is calculated. The
trailing window, called the test window, contains the data over which the Schruben test is performed.
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Figure 4. Relative size and position of the test and variance windows in the original version of the
Schruben test.
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Figure 5: Relative size and position of the test and variance windows in the modified version of the
Schruben test.

Upon experimentation it was found that increasing the distance into the future that the test was
able to look resulted in no significant increase in performance. This appeared to be due to the small
size of the windows of data being tested, usually equivalent to 200 observations. An initial sensitivity
analysisof the Schruben test to determine the significance of the various parameters on the performance
of the test showed that the test as originally specified in [11] was most sensitive to the size of the test
and variance windows. Although increasing the window sizes increased the power of the test it also
decreased the accuracy of estimates, since the amount of data discarded each time the hypothesisis not
satisfied is proportional to the window size. This means that in a lightly loaded system an excessive
amount of data could be discarded if the window sizes are optimised for heavily loaded systems. The
results of these findings were incorporated into our modification of the Schruben test, by making the
windows sizes proportional to the system load.

It was also noted during experimentation that the Spectral Analysis method used to estimate the
variance of collected dataas previously implemented in SAM [13] and AKAROA [12] assumed that only
200 data points would be used. In this application the size of the variance window is variable. So,
Fishman’s autoregressive method [3] was used to estimate the variance of the observations within the
variance window, as also used by Schruben in [14] and Jackway and deSilva[7] in their version of the
Schruben test.

Simulation results show that using awindow size that is 3000 times the system loading, i.e., 3000p,
and placing the variance window ten times the window size into the “future” gave the best results, as
shown in Section 3. This version of the Schruben test is referred to as version 2, while the version as
proposed in [11] isreferred to as version 1.

The version of the Schruben test procedure described in [11] included a mechanism that was
intended to alow the test window size to increase as the variance present in the system increased. The
mechanism set the size of the test window on the basis of the maximum of adefault value and a portion
of the length given as afirst estimate by the heuristic used. Unfortunately, this mechanism turned out
not to be particularly effective since the heuristic is insensitive to the increased variance present in the
system at high loadings, as we describe in Section 3.

2.2 Yucesan Test

Thetest proposed by Y ticesan [ 18] for detecting thelength of theinitia transient phaseisarandomisation
test. The only characteristic of the simulated system that is of interest to the test is the commonality of
batch means within the data. The requirements enforced by the assumption that a test statistic comes
from a standard distribution are deemed unnecessarily restricting. This assumption may cause the null
hypothesis to be rejected on the grounds that one of the “extra” requirements does not hold while the



characteristic of interest doesin fact satisfy the hypothesis. A randomisation procedureis used to avoid
the introduction of unnecessary constraints, such as those present in the Schruben test.

The aim of randomisation tests is to test the characteristic of interest, in this case the means of
batches of data, without introducing any other constraintsto the test procedure. The randomisation test
is used to approximate the distribution of the test statistic by shuffling or permuting the test data. The
significance of the actual test statistic for the unshuffled data is then assessed relative to the empirically
generated distribution obtained through shuffling rather than from a specified distribution.

The test statistic used by Y ticesan is based on the means of batches within the data, rather than a
sequence of partial sumsin a standardised time series as in the Schruben test. Once the observations
have been collected into b batches of size m the means of these batches are used as secondary data
points.

Xi = Z €4 (8)
m#(i—1)+1

where X; isthe mean of the ith batch and «:; isthe jth primary data point. Using the batch means rather
than the primary data stream in the test makes the Y ticesan procedure computationally much faster than
methods based on the Schruben tests which have to recalculate the test statistic from the primary data
stream every time. Once the batch means have been calculated they are split into two groups, G, and
Go. Thefirst group initially contains the first batch mean and the second group the other b — 1 batch
means. The means within each group are then averaged to create group means,

Xa, =) X, (©)

where X; isin group G.. Thesetwo group means are then compared and the absolute difference forms
the actual test statistic,
T=|Xq — X, (120)

The order of all b means (X;) is then randomised and split in the same way to compute a pseudo
statistic, 7. This pseudo statistic is calculated for Ny different randomised orderings of the batches.
The calculated significance level, si, of the test is calculated from the number of times the pseudo
statistic, 7", is greater than or equal to the actual statistic, T'.

nge + 1
sl=———

= 11
Ns 11 (11)

where nge is a count of the number of times T’ exceeds T. The addition of one protects against
division by zero and nil results. If the calculated significancelevel, si, hasreached the desired value the
procedureis finished and theinitial transient phaseis said to be finished at the end of the first group of
unshuffled batches. If the significance has not been reached then the first batch mean from the original
ordering of the second group istransferred to the first group (so the first group contains 2 means while
the second contains b — 2 means) and the whol e process repeated.

Thisis summarised as follows:

Step 1 Collect b sufficiently uncorrelated batches and calculate b batch means.
Step 2 Split batch meansinto two groups, G and Gb.
Step 3 Calculate actual test statistic, T', following (10

Step 4 Randomise the order of the batch means and cal cul ate the pseudo-statistic, 7.



Step 5 Increasenge if TV > T.
Step 6 Repeat steps4 and 5 Ng times.
Step 7 Calculate significance level of the test, sl.

If the desired significance level has not been reached swap one batch from G, to G; and repeat
from Step 3. If thereis only one batch in G5, either the user can be warned and a cut-off made at the
end of the collected data or more data can be collected and the whole process repeated. |If the desired
significance has been reached then the truncation point is said to be at the end of the batchesin G1 in
their original order.

afigure goes here

Figure 6: Data batches as used in the Y Uicesan test.

In the original version of the Y licesan test [18], when the batch size is selected a check is made
to ensure that the batches are sufficiently large that any significant serial correlation between the batch
means has been removed. If the serial correlation is too high (ie., 0.5 or more) then the batch size
is increased and the batch means recalculated. The original version of the Y licesan test used b = 30
batches with an initial batch size m = 500 observations, which is doubled each time the correlation
between the batch meansistoo high. This technique was found to lead to batchesin the order of 8000
observations when applied in heavily loaded systems. Having such large batch sizes made the test very
imprecisein its estimate of the length of theinitial transient phase which isundesirablein the given task
domain. Asan alternative to this, a modified implementation of the Y licesan test that we investigated,
uses 50 batches of 100 observations, increasing each batch by 100 observations when inter-batch mean
correlation is too high. These batch sizes and numbers were used based upon the performance of
automated versions of the batch means method [11].

Simulation results showed that the Y ticesan test, described in [18], did not always give particularly
“safe” estimates of the length of the initial transient phase. However, as may be seen in Figure 7, it
performed better than either version of the Schrubentest. Asdiscussed earlier, adetection method should
ideally give estimates above the relaxation estimate. Y icesan [18] mentioned that the significance of
the test statistic should increase monotonically with the number of batches contained in the first group
in the case where initialisation bias is present. Following this, if we wish to increase the number of
batches placed into the first group before the test’s target significanceis reached we simply increasethe
target significance. Results showed that selecting a target significance of 50% gave much safer results.
In using a hypothesis testing framework to determine the length of the initial transient phase we wish
to be very certain of the acceptance of the hypothesis, hence the relatively high level of significance
required.

In Figure 7 the original version of the Y Uicesan test is referred to as Version 1, while the modified
test isreferred to as Version 2.

3 Comparison of Initial Transient Detectors

The performance of each of the detectors of the length of the initial transient phasewas evaluated in
avariety of queueing systemsover arange of system loads. The results obtained for theM/M/1, M/D/1,
M/E,/1 and M/H,./1 queueing systems are shown in Figures 7, 8, 9 and 10 respectively, each point is
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Figure 7: Performance of initial transient detectors for the M/M/1 queue. Coefficient of variation,
C=1
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Figure 8: Performance of initial transient detectors for the M/D/1 queue. Coefficient of variation,
C=0.

the average of 500 experiments. To obtain safer results the initia transient detector should produce
results above the relaxation time (shown as a continuous line). The results from using the heuristic (25
crossings) alone, without applying a stationarity test, are represented with a line with diamonds on it.
As may be seen, the modification of the Schruben test (Version 2) offers better performance than the
original (Version 1) but does not prevent it from “saturating” in a high load situation. On the other
hand, both the original version of the Y licesan test (Version 1) and its modification (Version 2) follow
the trend given by the relaxation estimate. Version 2 increases the variance of the results, but generally
increases their “safety”. The figures show that in all queueing systems studied the relative ordering in
performance of the tests was the same, regardless of the system under study, and that none of the tests
were able to avoid some degree of saturation at high loads in a system with a high degree of variation,
(eg., the M/H,/1 system).

4 Significance of theinitial transient phase

Traditionally in steady-state simulation, data collected during the initial transient phase of a simu-
lation experiment has been discarded in an effort to eliminate the bias that it introduces. This practice,
called data-truncation, designed to reduce bias, may increase the mean squared error of the estimate
or the variance of the data[9]. The question arises as to the significance of the bias introduced by
the initial transient phase, and if it warrants the removal of the transient phase data. Table 1 shows
the mean total simulation lengths of experiments in which the total time spent by a customer in an
M/M/1 queueing system was estimated, with and without deletion of the initial transient phase, using
Independent Replications. Also shown is the relative participation of the initial transient period in
the total length of these simulations. The length of the initial transient phase is determined using the
theoretical value given by the relaxation time estimate, in Section 1.1. The estimates are calculated
over 500 experiments, with each replication using a sample of 5000 observations. Results of asimilar
investigation were reported in [8].

Table 1 suggests that the participation of the initial transient phase in the total simulation is
considerable, especially in heavily loaded systems. Thisis confirmed in Figure 11 which shows the
effect of the initial transient period on the quality of final results, measured by the coverage of final
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Figure 9: Performance of initial transient detectors for the M/E,/1 queue. Coefficient of variation,
C =05.
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Figure 10: Performance of initial transient detectors for the M/H/1 queue. Coefficient of variation,
C = 10.

With deletion Without deletion Relative length
p | Replication Total | Replication Total | of transient (%)
0.2 5009 | 44510 5000 | 44980 0.2
0.4 5021 | 48071 5000 | 47990 0.4
0.6 5056 | 65970 5000 | 64770 11
0.8 5256 | 192843 5000 | 180940 49
0.9 6084 | 763670 5000 | 612505 17.8

Table 1: Mean replication lengths and total simulation length when analysing the time spent in the
system by a customer in an M/M/1 gueueing system, with and without deletion of the initial transient
phase, when using Independent Replications. Also shown is the relative length of the initial transient
period. Estimates are over 500 experiments, with each replication using a sample of 5000 observations.

results obtained using a traditional implementation of Independent Replications, where the length of
each replicationisset by the experimenter before simulation begins. Estimatesare over 500 experiments,
with each replication using a sample of 5000 observationsto estimate the final result and the number of
replications increased until an estimate of least 5% relative precision was obtained.

In each casethe length of theinitial transient phase and thusthe relative length of theinitial transient
phase with respect to the total simulation increases asthe system load, p, increases. Asthefixed length
of replications used increasesthe stability and quality of results produced by the method increases. This
trend is matched by a corresponding increase in the total simulation length as the replication length
increases.

These results are compared with similar results for the single replication Spectral Analysis method
proposed by Heidelberger and Welch [6]. This method is based on analysis of the spectral density
function of the simulation output data and in this experiment estimates were required to be of at least
5% relative precision.

Table 2 suggeststhat the influence of the initial transient phase on the method of Spectral Analysis
is very small. Figure 12 shows the effect of the initial transient period on the quality of final results
as measured by the coverage of results when using Spectral Analysis. The results show that although
theinitial transient phase may appear to have avery small participation in the output from asimulation
experiment it has a significant effect on the quality of the steady-state results produced by the method
and thus it should be removed.

afigure goes here

Figure 11: Coverage analysis of an M/M/1 queue using Independent Replications in its traditional
version, using replications of 5000 observations.
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Mean Total Simulation Length | Relative length
p | Withdeletion | Without deletion | of transient (%)
0.2 6629 5074 4.4
04 13465 11567 4.5
0.6 34639 32547 4.6
0.8 172045 166436 05
0.9 700449 677995 0.25

Table 2: Mean total simulation length when analysing the time spent by a customer in an M/M/1
gueueing system, with and without deletion of theinitial transient phase, when using Spectral Analysis.
Also shown is the relative length of theinitial transient period.

afigure goes here

Figure 12: Coverage analysis of an M/M/1 queue using Spectral Analysis. Estimates are over 500
experiments.

5 Conclusions

The aim of this research was to produce a fully automated simulation output analysis method, that
would be statistically valid, and able to be used by the novice user, based on independent replications.
With this task in mind a number of problems which have traditionally stood in the way of developing
such a method were investigated. These problems include accurate and statistically sound detection of
the length of the initial transient phase within a simulation experiment and automated selection of the
replication length for Independent Replications.

The investigation of the initial transient phase detection problem included a comparative study
of two of candidate methods. The methods originally proposed by Schruben and Y licesan were
implemented and their performance investigated through the use of simulation studies in a variety of
gqueueing systems. From this investigation an initial transient detector based on the Y ticesan method
was developed that performs well in awide variety of systemsin a completely automated and system
independent manner.
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