
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Akaroa2 
User’s Manual 

!
!
!

Gregory Ewing 
Krzysztof Pawlikowski 

Donald McNickle 
!

 



ii



!
!
!
!

Preface 
!
!
!

AKAROA© Copyright 1992-1993, Department of Computer Science, University of 
Canterbury, New Zealand. All rights reserved. 
 
AKAROA2© Copyright 1995-2015, Department of Computer Science and Software 
Engineering, University of Canterbury, New Zealand, and MRIP Simulation Ltd. 
All rights reserved.  
 
Use of AKAROA2 requires a licence; see  
< https://akaroa.canterbury.ac.nz/akaroa/obtaining.chtml  > for more information. 

!
The original version of AKAROA was designed at the Department of Computer Sci- 
ence, University of Canterbury in Christchurch, New Zealand, by Dr Krzysztof 
Pawlikowski and Victor Yau (Department of Computer Science) and Dr Donald 
McNickle (Department of Management). The project was partially sponsored by 
Telecom Australia Research Laboratories in Melbourne. 

  
The current implementation (AKAROA2) has been re-designed and re-implemented by 
Dr. G. Ewing, Dr. K. Pawlikowski and Dr. D. McNickle.  

 
Contributions from Peter Smith, Ruth Lee, Mirko Eickoff, Will Gittoes, Jin Hong, 
Mofassir Haque, Ludger Bischofs, Adam Freeth and Martin Brožovič are also 
acknowledged. 
!
For more information, please contact 
Prof. K. Pawlikowski, Department of Computer Science and Software Engineering,  
University of Canterbury, Christchurch, New Zealand  
Email:  krys.pawlikowski@canterbury.ac.nz 
WWW:  http://www.cosc.canterbury.ac.nz/krys.pawlikowski/ 
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

iii 



iv



Contents

1 Introduction 1
1.1 Using Akaroa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Writing a simulation for Akaroa 3
2.1 Example simulation program . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Compiling a simulation program . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Using a simulation program . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Observing more than one parameter . . . . . . . . . . . . . . . . . . . . . 4
2.5 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5.1 Algorithm used by AkRandomReal . . . . . . . . . . . . . . . . . 5
2.6 Terminating Simulation vs. Steady-State Simulation . . . . . . . . . . . . . 5

3 Running a simulation under Akaroa 7
3.1 Parts of the Akaroa system . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Starting up the Akaroa system . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Running a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Specifying acceptable error and confidence level . . . . . . . . . . 9
3.3.2 Running on particular hosts . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 Passing options to the simulation program . . . . . . . . . . . . . . 10
3.3.4 Controlling the random number seed . . . . . . . . . . . . . . . . . 10
3.3.5 Messages you may get from akrun . . . . . . . . . . . . . . . . . . 11

3.4 Adding engines to a running simulation . . . . . . . . . . . . . . . . . . . 11
3.5 Monitoring the Akaroa system . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Column headings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Shutting down the Akaroa system . . . . . . . . . . . . . . . . . . . . . . 13
3.7 Debugging a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7.1 Sending diagnostic information . . . . . . . . . . . . . . . . . . . 14
3.7.2 Running a simulation engine under a debugger . . . . . . . . . . . 14
3.7.3 Precautions against excessively short runs . . . . . . . . . . . . . . 14

3.8 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.1 The main akgui window . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.2 Starting a simulation . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.3 Simulation window . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.4 Examining an existing simulation . . . . . . . . . . . . . . . . . . 16
3.8.5 Quitting akgui . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Akaroa Environment 17
4.1 Environment Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Environment Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



vi CONTENTS

5 Akaroa Library Routines 21
5.1 Random Number Distributions . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Using Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.2 Using PriorityQueues . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Process Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Creating a process . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.3 Stack size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.5 Other routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.6 AkSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6.2 Using AkSimulation . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Examples 31
6.1 An M/M/1 Queueing System . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 A Multiprocessing Computer System . . . . . . . . . . . . . . . . . . . . . 32
6.3 A Terminating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A Adding Observation Analysis Methods to Akaroa 37
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.1 Observation analysis phases . . . . . . . . . . . . . . . . . . . . . 37
A.2 Copying the Akaroa sources . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3 Adding a Transient Detection method . . . . . . . . . . . . . . . . . . . . 38

A.3.1 Subclassing TransientDetector . . . . . . . . . . . . . . . . . . . . 38
A.3.2 Declaring your transient detector to Akaroa . . . . . . . . . . . . . 39
A.3.3 Adding a value for the TransientMethod variable . . . . . . . . . . 39
A.3.4 Adding your code to the Makefile . . . . . . . . . . . . . . . . . . 39
A.3.5 Recompiling Akaroa . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.4 Adding a Variance Estimation method . . . . . . . . . . . . . . . . . . . . 40
A.4.1 Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4.2 Steps to implementing an estimation method . . . . . . . . . . . . 40
A.4.3 Subclassing VarianceEstimator . . . . . . . . . . . . . . . . . . . . 40
A.4.4 Declaring your variance estimator to Akaroa . . . . . . . . . . . . 41
A.4.5 Adding a value for the AnalysisMethod variable . . . . . . . . . . 42
A.4.6 Adding your code to the Makefile . . . . . . . . . . . . . . . . . . 42

A.5 Recompiling Akaroa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.6 Accessing the Akaroa Environment . . . . . . . . . . . . . . . . . . . . . 43

A.6.1 Retrieving Akaroa environment variables . . . . . . . . . . . . . . 43
A.6.2 Defining new Akaroa environment variables . . . . . . . . . . . . . 43



CONTENTS vii

B Obsolete Facilities 45
B.1 Event Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B.1.1 Event Manager Routines . . . . . . . . . . . . . . . . . . . . . . . 45
B.2 Linear Congruential Random Number Generator . . . . . . . . . . . . . . 46

Bibliography 47



Chapter 1

Introduction

Quantitative stochastic simulation is a useful tool for studying performance of stochastic
dynamic systems, but it can consume much time and computing resources. Even with
today’s high speed processors, it is common for simulation jobs to take hours or days to
complete.

Processor speeds are increasing as technology improves, but there are limits to the speed
that can be achieved with a single, serial processor. To overcome these limits, parallel or
distributed computation is needed. Not only does this speed up the simulation process,
in the best case proportionally to the number of processors used, but the reliability of the
program can be improved by placing less reliance on a single processor.

One approach to parallel simulation is to divide up the simulation model and simulate
a part of it on each processor. However, depending on the nature of the model it can be
very difficult to find a way of dividing it up, and if the model does not divide up readily, the
gain from parallelising it will be less than proportional to the number of processors. Even
in cases where the model can be parallelised easily, more work is required to implement a
parallel version of the simulation than a serial one.

Akaroa takes a different approach to parallel simulation, that ofmultiple replications in
parallel or MRIP [1-8]. Instead of dividing up the simulation program, multiple instances
of an ordinary serial simulation program are run simultaneously on different processors.

These instances run independently of one another, and continuously send back to a
central controlling process observations of the simulation model parameters which are of
interest. The central process calculates from these observations an overall estimate of the
mean value of each parameter. When it judges that it has enough observations to form an
estimate of the required accuracy, it halts the simulation.

Since the simulations run independently, if there are n copies of the simulation running
on n processors they will on average produce observations at n times the rate of a single
copy, and therefor produce enough observations to halt the simulation after 1/nth of the
time. So the MRIP technique can be expected to speed up the simulation approximately in
proportion to the number of processors used.

MRIP also provides a degree of fault tolerance. It doesn’t matter which instance of the
simulation the estimates come from, so if one processor fails, the program it was running
can be restarted and the simulation continued without penalty. Alternatively, the simula-
tion can simply be continued with one less processor and take proportionately longer to
complete.

In summary, the advantages of the MRIP technique are that it can be applied to any
simulation program without the need to parallelise it or modify it in any way; it provides
a speedup proportional to the number of processors; and it improves the reliability of the
simulation.

1



2 CHAPTER 1. INTRODUCTION

1.1 Using Akaroa
To use Akaroa, the user writes a simulation program which models the system to be stud-
ied and, when executed, collects a series of observations of one or more parameters of
the processes being simulated. Akaroa automatically launches and manages the execution
of a number of copies of this program on available processors; each such copy is called a
simulation engine. Each simulation engine runs independently of the others and generates
its own sequence of observations, from which local estimates of the parameters are calcu-
lated. Akaroa collects these local estimates when they are produced and calculates a global
estimate of each parameter.

The user specifies the acceptable error and confidence level for each parameter. When
the global estimates of all parameters have reached the required error at the required level of
confidence, the simulation engines are automatically stopped, and the results are reported.

If any of the simulation engines fails for some reason, the rest are allowed to continue,
and the global estimates are calculated using values from the remaining engines. Akaroa
thereby provides a certain amount of fault tolerance - if one of the processors goes down,
the simulation will continue, although it will take longer to complete.



Chapter 2

Writing a simulation for Akaroa

Writing a simulation program to run under Akaroa is very straightforward. You write a
program in C or C++ to simulate the system you wish to study, using whatever techniques
you would normally use. 1 Whenever your program generates an observation of one of the
parameters you are interested in, you make a call to the Akaroa library to communicate this
observation to the Akaroa system.

2.1 Example simulation program
Here is an example of a very simple simulation program designed to run under Akaroa. It
simulates a process which generates random numbers in the range 0 to 1, and gives each
number to Akaroa as an observation. (The source of this program, and the other examples in
this manual, can be found in the examples directory of the Akaroa installation directory.
Consult your site administrator for the location of this directory.)

/*
* uni.C - A very simple simulation engine
*/

#include <akaroa.H>
#include <akaroa/distributions.H>

int main(int argc, char *argv[]) {
for (;;) {
double x = Uniform(0, 1);
AkObservation(x);

}
}

This example demonstrates how to use one of the most important Akaroa library rou-
tines. AkObservation takes an observation and makes it known to the Akaroa system,
which updates its estimate of the mean value. As long as the estimate has not yet reached
the required accuracy, AkObservationwill return and allow the simulation to continue.
When the estimated error is within the specified limit, Akaroa will automatically terminate
the simulation.

This example also uses the routine Uniform, which returns uniformly distributed ran-
dom numbers in the specified range. You should always use Akaroa library routines to
obtain random numbers; for more information, see section 2.5.

1You may also write the program in any language capable of calling a library routine written in C. The mod-
elling facilities described in chapter 5 are only available to C++ programs, however.

3



4 CHAPTER 2. WRITING A SIMULATION FOR AKAROA

2.2 Compiling a simulation program
The examples directory contains a Makefile for compiling the example programs.
You can copy this Makefile to your own directory and use it for compiling your own simu-
lation programs.

For example, if you have also copied the file uni.C from the examples directory, you
can compile it with the command

% make uni

If your simulation program consists of a single source file, you can compile it with the
command make xxx, where xxx is the name of the program, without making any changes
to the Makefile. But if your program is built from more than one source file, you will have
to add a rule for linking it to the Makefile. An example of such a rule is included at the
bottom of the Makefile.

2.3 Using a simulation program
A simulation programmay, without modification, be used in two ways. It may be launched
manually and run stand-alone, or it may be launched automatically by Akaroa as a sim-
ulation engine. When run stand-alone, it will write a report of the final estimate of each
parameter to standard output when finished. Here is an example of the output produced by
running the uni program stand-alone:

% uni
Param Estimate Delta Conf Var Count Trans

1 0.483686 0.0218746 0.95 8.55314e-05 756 252

Estimate is Akaroa’s estimate of the mean value of the parameter, Delta is the half-
width of the confidence interval, Conf is the confidence level, and Var is the variance of the
estimate. Count is the total number of observations collected, and Trans is the number of
observations that were discarded during the transient phase, before the system settled down
into a steady state.

2.4 Observing more than one parameter
If your simulation produces observations of more than one parameter, you need to call
AkDeclareParameters before starting your simulation, and pass it the number of pa-
rameters you wish to estimate. Then, each time you call AkObservation, you pass it
the parameter number along with the observation.

For example, here’s an extension of uni which generates observations of two parame-
ters:

/*
* uni2.C - A very simple 2-parameter simulation engine
*/

#include <akaroa.H>
#include <akaroa/distributions.H>

int main(int argc, char *argv[]) {
AkDeclareParameters(2);
for (;;) {
double x = Uniform(0, 1);



2.5. RANDOM NUMBERS 5

double y = x * x;
AkObservation(1, x);
AkObservation(2, y);

}
}

Running uni2 produces output similar to the following:

% uni2
Param Estimate Delta Conf Var Count Trans

1 0.492028 0.0148889 0.95 3.96252e-05 1512 252
2 0.322265 0.0159348 0.95 4.53877e-05 1554 259

2.5 Random Numbers
When running multiple replications of a simulation model in parallel, it is important that
each simulation engine uses a unique stream of randomnumbers, independent of the streams
used by other simulation engines. For this reason, if your simulation requires random num-
bers, you should always obtain them from the Akaroa system, so that Akaroa can coordinate
the random number streams received by different simulation engines.

The simplest way is to use the random number distribution routines provided in the
Akaroa library, described in section 5.1. If you need a distribution that is not provided
in the library, you will need to write your own distribution generator, using the routine
AkRandomReal as a basic source of random numbers:

real AkRandomReal();

Each time AkRandomReal is called, it returns a random real number x such that 0 <
x < 1, drawn from a uniform distribution.

2.5.1 Algorithm used by AkRandomReal
AkRandomReal uses a Combined Multiple Recursive pseudorandom number generator
(CMRG) with a period of approximately 2191. This sequence is divided into blocks of
2128 and one block assigned to each simulation engine.

The particular generator used is the one called MRG32k3a in Pierre L’Ecuyer, “Good
Parameters and Implementations for Combined Multiple Recursive Random Number Gen-
erators”, Operations Research, vol. 47, no. 1, Jan-Feb 1999, pp. 159-164. For more
information, see the on-line manual entry AkRandomReal(3).

2.6 Terminating Simulation vs. Steady-State Simulation
In steady-state simulation, the stream of observations produced by the simulation model
is usually correlated. However, some types of simulation produce observations which are
independent. An example is terminating simulation in which the simulation is run for a pre-
determined period, at the end of which a single data item is produced. To obtain a stream
of data items for Akaroa to analyse as observations, the simulation must be repeated many
times with different random number seeds. Because the repetitions are independent of each
other, the data items produced are also independent.

In the case of independent observations, there is no transient phase, and there is no need
to use a method such as Batch Means or Spectral Analysis to analyse the observations. To
take advantage of these facts, Akaroa has an independent observation mode. This mode is
selected by making the following call to the AkObservationType routine:



6 CHAPTER 2. WRITING A SIMULATION FOR AKAROA

AkObservationType(AkIndependent);

You must make this call before calling AkDeclareParameters or calling AkObservation
for the first time. (If you call it later, it will have no effect, and Akaroa will assume that the
observations are correlated.) For an example of a simulation which uses this routine, see
Chapter 6.

When independent observation mode is selected, the settings of the TransientMethod
and AnalysisMethod environment variables are ignored. No transient observations are dis-
carded, and the variance of the estimate of the mean is estimated using

σ̂2
X̄ =

1
N

σ̂2
Xi

(2.1)

whereXi is the ith data item andN is the number of independent data items, and

σ̂2
Xi

=
1

N − 1

N∑

i=1

(Xi − X̄)2 (2.2)



Chapter 3

Running a simulation under
Akaroa

This section explains how to run multiple replications of your simulation in parallel under
the Akaroa system.

3.1 Parts of the Akaroa system
The Akaroa system consists of three main programs, akmaster, akslave, and akrun, plus
three auxiliary programs akadd, akstat and akgui.

Akmaster is the master process which coordinates all other processes in the Akaroa
system. Before you can use Akaroa, there must be an akmaster process of yours running
on some host which can communicate with all the other hosts you wish to use.

There must be an akslave process running on each host that you wish to use to run a
simulation engine. Akmaster uses the akslave to launch the simulation engine and to help
establish communication with it.

The host on which akmaster is running may also, if you wish, run an akslave, and
therefore be used to run a simulation engine.

Once the akmaster and any desired akslaves are running, you may use akrun to start
a simulation. Akrun takes as arguments the name of the program you wish to run as a
simulation engine, any arguments to be passes to that program, and the number of hosts on
which you want to run it.

Akrun instructs akmaster to launch the simulation on the requested number of hosts.
Akmaster chooses this many hosts from among those running akslaves, and instructs the
akslaves on those hosts to launch the requested program as a simulation engine.

Akmaster collects local estimates from the simulation engines, calculates global esti-
mates, and decides when to stop the simulation. When the simulation is over, akmaster
sends the final global estimates back to akrun, which reports them to the user and exits.

Akadd (section 3.4) is used to add more simulations to a running simulation. Akstat
(section 3.5) is used to obtain information about the state of the Akaroa system. Akgui
(section 3.8) provides a graphical user interface for starting and monitoring simulations
that can be used instead of, or in addition to, akrun and akstat.

3.2 Starting up the Akaroa system
To start up the Akaroa system:

1. Start akmaster running in the background on some host.

7



8 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

2. On each host where you wish to run a simulation engine, start akslave running in the
background.

You may accomplish these steps either by using rsh or ssh, or by logging into the
relevant hosts and running the programs directly. However, you should take care about the
environment in which each akslave process runs. The program name that you give to akrun
will be passed as-is to each akslave, and you must ensure that the akslave will be able to
find it, either by using a full pathname, or by including the directory where it resides in
your search path before launching the akslaves.

If you are going to launch akslaves using rsh or ssh, you must make any necessary
additions to your search path in your shell startup file, not just in the shell from which you
issue the remote command.

Shared vs. non-shared file systems

The Akaroa system is easiest to use if your home directory is shared between all the hosts
on which you will be running Akaroa processes. The following examples assume that this
is the case.

If your home directory is not shared, Akaroa can still be used, but you will need to
copy the files .akmaster and .akauth from your home directory on the host where
akmaster is running to your home directories on all the other hosts. This must be done after
starting akmaster (and will need to be repeated if you shut down and restart akmaster).

WARNING: Take care with the .akauth file. This file, and any copies of it, should
not be readable by anyone other than its owner (i.e. its permissions should be set to
-rw-------). This is important for the security of the Akaroa system: if any other
user can read the contents of your .akauth file, that user could run arbitrary processes
under your user ID.

Example: Starting up Akaroa via ssh

Here is an example of using ssh to start up Akaroa on two hosts, purau and mohua, with
the akmaster running on a third host, whio. It assumes that the user is already logged into
whio, and has set up her path variable in her shell startup file to include the directory where
her simulation programs reside, and the directory where the akaroa programs reside.

Note: Depending on how your system is set up, you may be asked to enter your pass-
word after each ssh command. This is not shown in the following examples.

whio% akmaster &
[1] 14018
whio% ssh purau ’akslave &’
[1] 14117
whio% ssh mohua ’akslave &’
[1] 14136
whio%

Once an akslave is up and running, it breaks its links with the ssh. So, if the ssh
command exits without any error messages, you know that the akslave has been launched
successfully.

3.3 Running a simulation
The akrun command starts a simulation, waits for it to complete, and writes a report of the
results to standard output. The basic usage of the akrun command is:

akrun -n num hosts command [ argument... ]



3.3. RUNNING A SIMULATION 9

where num hosts is the number of hosts on which you wish to run simulations, com-
mand is the name of the program you wish to run as a simulation engine, and the arguments
are the arguments, if any, that you want to pass to each simulation engine.

Once Akaroa is started up, you may run as many simulations as you like. You may
even run more than one simulation at a time, although they will compete with each other
for processing resources.

You can make a new host available for running simulation engines at any time by start-
ing an akslave on that host (although it will only be available to simulations subsequently
started, not to any already running).

Example: Running uni under Akaroa

Assuming that Akaroa has been started up in the manner of the previous example, here
is an example showing how to run the uni program on two hosts, and the typical output
produced:

whio% akrun -n 2 uni
Simulation ID = 17
Simulation engine started: host = pukeko, pid = 23672
Simulation engine started: host = purau, pid = 434
Param Estimate Delta Conf Var Count Trans

1 0.503476 0.0157353 0.95 4.42582e-05 1530 255
whio%

3.3.1 Specifying acceptable error and confidence level
By default, Akaroa runs your simulation until all results have a relative error of ±5% or
better, at a confidence level of 95%. These can be changed using the -e, -a and -c options
to akrun.

Relative error

You can specify the maximum acceptable relative error using the -e option to akrun. For
example,

akrun -n 2 -e 0.02 uni

specifies a relative error of ±2% or better.

Absolute error

You can specify the acceptable error in absolute instead of relative terms using the -a
option. For example,

akrun -n 2 -a 0.005 uni

specifies an absolute error of ±0.005 or better.

Important: If you suspect that the true mean of the quantity you are estimat-
ing could be zero or nearly zero, you will have to specify an absolute error,
otherwise the simulation may never stop.



10 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

Specifying both relative and absolute error

If you specify both a relative and an absolute error, the simulation will be stopped when
either error criterion is satisfied. This can be useful if you are unsure of the magnitude of
the estimate, and therefore want to specify the error in relative terms, but also want to guard
against the estimate turning out to be zero.

For example,

akrun -n 2 -e 0.02 -a 0.005 uni

will stop when the estimate reaches an error of either ±2% or ±0.005, whichever happens
first.

Confidence level

The confidence level can be specified using the -c option. For example,

akrun -n 2 -c 0.9 uni

will test the error of the results at a confidence level of 90%.

3.3.2 Running on particular hosts
If you just specify a number of hosts to akrun with the -n option, the Akaroa system arbi-
trarily chooses this many hosts from among those running akslave processes. Akaroa will
try to spread the simulation load that it is given evenly over the hosts available, but it only
takes Akaroa processes into account. It doesn’t know about non-Akaroa processes, or even
Akaroa processes belonging to another user.

If Akaroa’s simple method of load balancing is not sufficient, you can specify which
hosts to use by giving -H options to akrun. Each -H option is followed by the name of a
host. For example,

whio% akrun -H mohua -H raupo uni

will run simulation engines on the hosts mohua and raupo (provided they are both running
akslaves).

3.3.3 Passing options to the simulation program
If your simulation program requires arguments that begin with a hyphen, you will need to
separate them from the options to akrun by using a double hyphen, for example,

akrun -n 5 -- mysim -a 42 -b 6.8

All the arguments after -- are taken to be part of the simulation command.

3.3.4 Controlling the random number seed
Each time you invoke akrun to start a simulation, Akaroa begins allocating blocks of ran-
dom numbers to the simulation engines starting from the same point in the random number
sequence. If you want to run a simulation several times using different invocations of
akrun, with a different stream of random numbers each time, you will need to ensure that
the random number allocator begins at the point where it left off after the previous run.

To find out the state of the random number allocator at the end of a run, give the -s
option to akrun, for example:



3.4. ADDING ENGINES TO A RUNNING SIMULATION 11

whio% akrun -n 1 -s uni
Repetition 1:
Simulation engine 3921 started on purau
Repetition 2:
Simulation engine 3922 started on purau
RandomNumberState: 0:20000
Param Estimate Delta Conf Var Count Trans

1 0.502473 0.0251216 0.95 0.000163424 503 0
whio%

Note the RandomNumberState (0:20000 in this example) written out before the re-
port. This indicates the state of the randomnumber allocator at the end of the last repetition.
To run the simulation again, starting the random number from this state, give it to akrun
using the -r option:

whio% akrun -n 1 -r 0:20000 uni
Repetition 1:
Simulation engine 3928 started on purau
Repetition 2:
Simulation engine 3929 started on purau
Param Estimate Delta Conf Var Count Trans

1 0.494674 0.0247054 0.95 0.000158099 535 0
whio%

This time the results are different, as expected, since they are based on a different
random number sequence.

3.3.5 Messages you may get from akrun
Akrun will emit warning messages if certain events occur which could affect the progress
of the simulation:

Loss of simulation engine

If a simulation engine crashes, a warning message is issued and the simulation
is continued using the remaining engines. This will not affect the validity of
the results, but the simulation may take longer to complete.

Exhaustion of random number stream

When using the obsolete LCG generator, a warning is issued if the random
number stream is exhausted before the simulation completes.
The CMRG generator used in Akaroa 2.6 does not check for random number
sequence exhaustion. The length of the random number block allocated to
each simulation engine is 2128, and Akaroa can allocate 232 such blocks, so it
is extremely unlikely that exhaustion will ever be a problem.

3.4 Adding engines to a running simulation
The akadd command can be used to add simulation engines to a running simulation. You
can use it to replace engines which have been lost for some reason, or to speed up the
simulation if more hosts become available.

To start a given number of new engines, the usage is:



12 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

akadd -s sid -n num-engines

where sid is the simulation ID reported by akrun when the simulation was started. For
example,

akadd -s 42 -n 5

will add 5 new engines to the simulation with ID 42.
To add simulation engines running on particular hosts, the usage is:

akadd -s sid -H hostname...

For example,

akadd -s 42 -H purau matata kahu

will add three new engines running on the hosts purau, matata and kahu.

3.5 Monitoring the Akaroa system
The akstat command can be used to obtain information about the status of the Akaroa
system: what hosts are available, what simulations are running, and what progress each
simulation is making.

There are two kinds of options to akstat. Upper case options control which kind of
information to display, and lower case options restrict the information to particular simula-
tions, engines or parameters.

The -H option produces a list of hosts which are running akslave processes, together
with the number of simulation engines running on each host.

The -S option produces a list of the currently running simulations.
The -G option produces information about the current global estimates of parameters

being observed.
The -E option produces information about the state of simulation engines.
The -L option produces information about the current local estimates of parameters

from simulation engines.
Without any other options, the requested information is listed for all existing simula-

tions, engines or parameters. The -s option restricts the listing to a particular simulation
ID, -e to a particular engine number, and -p to a particular parameter.

Without any options at all, akstat assumes the -H and -S options.

3.5.1 Examples
akstat

List all hosts and all simulations.

akstat -S

List all simulations.

akstat -G

List global estimates of all parameters of all simulations.

akstat -G -s 27

List global estimates of all parameters of simulation ID 27.



3.6. SHUTTING DOWN THE AKAROA SYSTEM 13

akstat -G -s 27 -p 3

List global estimate of parameter 3 of simulation ID 27.

akstat -E

List all simulation engines of all simulations.

akstat -E -s 27

List all simulation engines of simulation ID 27.

akstat -E -s 27 -e 2

List engine 2 of simulation ID 27.

akstat -GL -s 27

List all global and local estimates of simulation ID 27.

akstat -L -e 2

List local estimates of all parameters for engine 2 of all simulations
which have at least 2 engines.

3.5.2 Column headings
HOST Host name
PID Process ID
ENGINES Number of engines running on host
SID Simulation ID
EID Engine ID
PAR Parameter number
PARMS Number of parameters
ENGS Number of engines belonging to simulation
RANDOM State of random number allocator
FLAGS Internal state flags (see the akstat(1) man page)
COMMAND Command and arguments
STATE State of simulation engine
MEAN Estimate of the mean
PREC Relative error of the estimate
VARIANCE Variance of the estimate
OBS Number of observations
TRANS Number of transient-phase observations
CHKPTS Number of checkpoints received
CP/MIN Average number of checkpoints per minute received during the last 10 minutes
LAST CHKPT Date and time at which the last checkpoint was received

For more detailed information, see the man page for akstat(1).

3.6 Shutting down the Akaroa system
To shut down the Akaroa system, simply kill the akmaster process. Any akslaves, akruns
or simulation engines attached to it will automatically terminate.

You can remove a host from the pool available for running simulation engines, without
shutting down the whole Akaroa system, by just killing the akslave on that host.



14 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

3.7 Debugging a simulation
Before you run your simulation under Akaroa, you should debug it as much as possible
stand-alone. If you compile your simulation program with the -g option, you can run it
under a source-level debugger and use all of the usual debugging techniques. Only when
you are satisfied that your simulation program runs successfully on its own should you
attempt to run it under Akaroa.

3.7.1 Sending diagnostic information
Usually, a simulation that runs correctly stand-alone will also run correctly under Akaroa.
However, sometimes you may encounter a bug that only shows up under Akaroa. To help
find such bugs, your simulation program can send diagnostic output using the AkMessage
routine:

AkMessage(format, arg1, arg2, ...);

AkMessage formats its arguments like printf and sends the result to the akrun
process that started the simulation, which in turn writes it to standard error.

Note that the standard input, output and error of a simulation engine running under
Akaroa are connected to /dev/null, so anything written to them will not be seen. 1

3.7.2 Running a simulation engine under a debugger
As an alternative to producing diagnostic output, you can persuade Akaroa to run your
simulation engine under a debugger by using a command such as

akrun -n 1 xxgdb mysim

You will need to supply any required arguments to your simulation engine in the run
command to xxgdb. You will also need to ensure that the akslave is running in an environ-
ment where the DISPLAY variable is set correctly. The easiest way to ensure this is to start
the akslave from an xterm on the relevant host.

3.7.3 Precautions against excessively short runs
In sequential stochastic simulation, sometimes the simulation stopping criteria are spuri-
ously met, causing the run to be stopped too soon and producing results which are not
reliable. If you are concerned about this possibility, you can guard against it by running
the simulation more than once (with a different random number seed each time) and disre-
garding results from any runs which are much shorter than the others (i.e. produced much
fewer observations).

To automate this process, akrun has a -R n option, which causes it to run the simulation
n times with different random number sequences. For each parameter, the final result
reported is the one from the run which submitted the greatest number of observations for
that parameter.

Increasing the value of n will reduce the probability of a spurious final result being
reported, but the simulation will take longer to complete.

The -A option may be used to obtain the results from all of the repetitions. Without
this option, akrun only reports the final results chosen.

1In some earlier versions of Akaroa, text written to the standard error of a simulation engine was reported by
akrun. This is no longer supported; AkMessage should be used instead.



3.8. GRAPHICAL USER INTERFACE 15

3.8 Graphical User Interface
The akgui program provides a graphical user interface to the Akaroa system as an alterna-
tive to the shell command interface provided by akrun, akadd and akstat.

Note: Akgui does not yet provide access to all the facilities of Akaroa. For
some tasks you may need to use the shell command interface.

Before using akgui, you will need to start up the Akaroa system using the akmaster and
akslave commands, as described in section 3.2.

3.8.1 The main akgui window
The main window of akgui displays two lists:

1. The host list shows the names of all hosts running akslave processes, their process
IDs, and the number of simulation engines running on that host.

2. The simulation list shows information about the currently running simulations: the
simulation ID, the number of parameters being estimated, the number of simulation
engines, and the command name and arguments.

3.8.2 Starting a simulation
To start a simulation, click the New Simulation button in the main window. Enter the
following information into the form which appears:

1. The simulation program name and arguments.

2. The required relative error and confidence level (if they differ from the default values
initially displayed).

3. The number of simulation engines to launch. Alternatively, you may choose the
Select Hosts option and select particular hosts on which to run engines.

You can optionally change the values of the following settings:

1. The analysis method (Spectral or BatchMeans).

2. The checkpoint spacing factor and method (see Chapter 4).

When you have filled out the form, click the Run button to begin the simulation. A
simulation window appears as described in the next section.

3.8.3 Simulation window
The simulation window displays the status of a running simulation and provides means of
adding engines or killing the simulation. There are four information display areas:

1. The box at the top of the window displays information identifying the simulation
(command and arguments, and simulation ID) and the status of the simulation (Run-
ning, Finished or Failed).

2. The Simulation Engines table lists the host, process ID and state of each simulation
engine belonging to the simulation. The possible states are:

• launching: The engine has been launched but has not yet contacted the akmas-
ter process.



16 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

• alive: The engine is running and reporting estimates.
• dead: The engine has died unexpectedly.

3. The Relative Error box displays a bar graph for each parameter being estimated. The
red bar shows the relative error of the current global estimate, and the black triangle
shows the maximum error requested for that parameter.

4. The Global Estimates table shows the current global estimate of each parameter,
its relative error, the total number of observations received for that parameter, and
the number of observations discarded during the transient phase. It also shows the
checkpoint arrival rate in checkpoints per minute (in total from all engines) and the
date and time of arrival of the last checkpoint received.

To add more engines to the simulation, click the Add Engines button. A form appears
similar to the one for selecting engines when the simulation was started.

When the simulation finishes, the simulation status changes to Finished. The engine
table, error bars and global estimate table are removed and replaced with a results table
showing the final estimate of each parameter, the half-width of its confidence interval, and
the total and transient observation counts. When you have finished examining the results,
you can dismiss the window by clicking the Close Window button.

To kill the simulation prematurely, click the Kill Simulation button.

3.8.4 Examining an existing simulation
You can examine the status of any running simulation by double-clicking its entry in the
main akgui window. If the simulation was started using akgui, this will bring its simulation
window to the front. If it was started using akrun (or using a different instance of akgui), a
simulation window will be created showing the status of the simulation.

The simulation window behaves slightly differently depending on whether the simu-
lation was started by akgui or not. If the simulation was started by akgui, the simulation
window must remain in existence until the simulation finishes – you cannot close the win-
dow without killing the simulation.

In contrast, if the simulation was not started by akgui, you can close the window at any
time without affecting the simulation. Moreover, you cannot kill the simulation using akgui
– to do that, you would have to find the akrun process which started the simulation and kill
it.

In either case, the Add Engines button can be used to add engines to the simulation.

3.8.5 Quitting akgui
The Quit button in the main akgui window quits akgui and closes any existing simulation
windows. The same thing will happen if you close the main akgui window using your
window manager.

Warning: Quitting akgui will kill any simulations started by it!



Chapter 4

The Akaroa Environment

The Akaroa Environment is a collection of variables which control the operation of the
Akaroa system. There are various ways that values can be specified for Akaroa Environ-
ment variables. One way is to supply an environment file for your simulation that specifies
these settings; another is to use command-line options to akrun.

Note: The Akaroa Environment has nothing to do with the Unix
environment. You cannot change an Akaroa Environment variable
using the shell commands which set Unix environment variables.

4.1 Environment Files
There are two ways to specify an environment file for a simulation:

1. Place a file called Akaroa in the directory where akrun is to be executed. When
akrun starts up, it looks for this file, and if it is present, reads environment settings
from it.

Note: A simulation engine running stand-alone also looks for this file.
Currently this is the onlymethod of specifying environment settings for a
stand-alone simulation engine.

2. The -f option to akrun can be used to specify an alternative environment file, for
example,

akrun -n 2 -f my env file mm1 0.1

Here is an example of an Akaroa environment file which sets the desired relative error
and confidence level for the results of the simulation.

RelError = 0.01
Confidence = 0.90

The RelError variable specifies the acceptable relative error, and the Confidence
variable specifies the confidence level. This example specifies the relative error of all pa-
rameters to be within ± 1% at a confidence level of 90%.

Variables may be set globally for all parameters, or locally for individual parameters.
The following example sets the confidence level of parameter 1 to 0.97, the relative error
of parameter 2 to 0.02, and the relative error and confidence levels of all other parameters
to 0.01 and 0.90.

17



18 CHAPTER 4. THE AKAROA ENVIRONMENT

RelError = 0.01
Confidence = 0.90
parameter 1 {

Confidence = 0.97
}
parameter 2 {

RelError = 0.02
}

Variables not mentioned at all in the environment file take on default values supplied
by the Akaroa system.

The full syntax of the environment file is presented in section 4.3.

Command line environment options
The -D option to akrun provides an alternative means of supplying Akaroa Environment
settings. One -D option is required for each environment variable to be set, for example,

akrun -n 2 -D AnalysisMethod=BatchMeans \
-D MaxTransientObs=10000000 mm1 0.9

Currently, this method can only be used to specify values which apply to all parameters.
To specify values for particular parameters, an environment file must be used.

4.2 Environment Variables
Here is a list of the Akaroa Environment variables you are most likely to want to set. The
values after “=” are the default values.

Variables pertaining to the Transient Phase
MaxTransientObs = 1 000 000

Maximum allowed number of observations in the transient phase. If more
than this number of observations is collected without the transient detec-
tor determining that the transient period is over, the simulation will be
aborted.

MaxSchrubenHeuristicObs = 10 000
Maximum allowed number of observations in the heuristic phase of the
Schruben test. If the Schruben transient detector fails to leave its heuristic
phase before this number of observations is collected, the simulation will
be aborted.

Variables pertaining to all analysis methods
RelError = 0.05

Maximum acceptable relative error. If this is set to zero, no relative error
criterion is tested against (AbsError must be given a non-zero value in
this case).

AbsError = 0.0
Maximum acceptable absolute error. If this is set to zero, no absolute
error criterion is tested against (RelError must be given a non-zero value
in this case).



4.2. ENVIRONMENT VARIABLES 19

Confidence = 0.95
Confidence level.

TransientMethod = Schruben
Method of finding the length of the transient period. In the current ver-
sion of Akaroa, only one method is available, based on the the Schruben
test [9].

AnalysisMethod = Spectral
Method of estimating variance. In the current version of Akaroa, two
methods are available: Spectral and BatchMeans [9].

Variables pertaining to Spectral Analysis
CPSpacingMethod = Linear

Method used to determine spacing between checkpoints (local estimates
sent to the akmaster process). One of:
Linear

Constant number of observations between checkpoints.
Geometric

Number of observations between checkpoints increase geometrically.
CPSpacingFactor = 1.5

For Linear spacing, distance between successive checkpoints, relative to
the length of the transient period.
For Geometric spacing, factor by which checkpoint spacing increases
after each checkpoint.

PeriodogramPoints = 25
Number of points of the periodogram used in spectral analysis.

PolynomialDegree = 2
Degree of the polynomial fitted to the periodogram in spectral analysis.

Variables pertaining to Batch Means
InitBatchSize = 50

Initial batch size. The final batch size chosen will be a multiple of this
size.

AnalysedSeqLen = 100
Length of the sequence of batch means tested for autocorrelation during
the batch size selection phase.

AutoCorrSignif = 0.1
Significance level at which the coefficients of autocorrelation of the batch
means are tested when determining whether to accept a batch size.

Variables pertaining to Random Numbers
RandomGenerator = CMRG

Algorithm for generation of random numbers.

CMRG
Combined Multiple Recursive Generator (period 2191)

LCG
Linear Congruential Generator (obsolete) (period 100(2 31 − 1))



20 CHAPTER 4. THE AKAROA ENVIRONMENT

Other Variables
KillSignal = 15

The signal with which to terminate simulation engines when the simu-
lation is over. Typically useful values are listed below; see your Unix
system man pages for signal numbers corresponding to other signals.

2 SIGINT
9 SIGKILL (cannot be caught or ignored)

15 SIGTERM

4.3 Environment Syntax
The formal syntax of the Akaroa environment file is described by the following grammar.
Items enclosed in curly braces {...} may be repeated zero or more times.

An identifier is a letter followed by zero or more letters or digits. An integer or float
is an integral or floating point constant written in the usual way. A string is a sequence of
characters enclosed in double quotes.

environment → { setting | parameter }
setting → identifier ‘=’ value
value → integer | float | identifier | string
parameter → ‘parameter’ integer ‘{’ { setting } ‘}’



Chapter 5

Akaroa Library Routines

Akaroa comes with a set of library routines and classes designed to help you write stochas-
tic discrete-event simulations. Their use is optional – you may use them if they help, or
you may use just the core Akaroa routines already described.

5.1 Random Number Distributions
Functions are available for providing random numbers drawn from a variety of commonly-
used distributions. These functions all use AkRandomReal as a basic source of random
numbers.

5.1.1 Synopsis
The following random number functions are defined:

#include <akaroa/distribution.H>

real Uniform(real a, real b);
long UniformInt(long n0, long n1);
long Binomial(long n, real p);
real Exponential(real m);
real Erlang(real m, real s);
real HyperExponential(real m, real s);
real Normal(real m, real s);
real LogNormal(real m, real s);
long Geometric(real m);
real HyperGeometric(real m, real s);
long Poisson(real m);
real Weibull(real alpha, real beta);

5.1.2 Descriptions
real Uniform(real a, real b)

Uniformly distributed reals in the range a to b.

long UniformInt(long n0, long n1)

Uniformly distributed integers in the range n0 to n1, inclusive.

long Binomial(long n, real p)

Binomial distribution from n items, each with a probability p of being drawn.

21



22 CHAPTER 5. AKAROA LIBRARY ROUTINES

real Normal(real m, real s)

Normal distribution with meanm and standard deviation s.

real LogNormal(real m, real s)

Log-normal distribution with meanm and standard deviation s.

real Exponential(real m)

Exponential distribution with meanm.

real HyperExponential(real m, real s)

HyperExponential distribution with meanm and standard deviation s, s > m.

long Poisson(real m)

Poisson distribution with meanm,m > 0.

long Geometric0(real m)

long Geometric1(real m)

Geometric distributions with meanm, m > 0. Geometric0 returns integers ≥ 0;
Geometric1 returns integers> 0.

real HyperGeometric(real m, real s)

HyperGeometric distribution with meanm.

real Erlang(real m, real s)

Erlang distribution with meanm and standard deviation s.

real Weibull(real alpha, real beta)

Weibull distribution with parameters alpha and beta.

5.2 Queues
Class Queue implements a queue of objects of some specified type. Objects may be added
to the tail of the queue and removed from the head. The queue may be tested for emptiness,
and the number of objects in the queue may be determined. Objects may belong to more
than one queue at a time, if desired.

5.2.1 Synopsis
Class Queue is defined as follows:

#include <akaroa/queue.H>

template <class T>
class Queue {
public:
Queue();
virtual void Insert(T *item);
virtual void Remove(T *item);
virtual T *Next();
virtual T *Head();
virtual int Empty();
virtual int Length();

};



5.3. PRIORITY QUEUES 23

5.2.2 Using Queues
When declaring a variable of type Queue, you need to specify the type of object the queue
is to contain, e.g.

Queue<Customer> customersWaiting;

5.2.3 Methods
Queue::Insert(item)

Adds item to the tail of the queue.

Queue::Remove(item)

Removes item from the queue, if it is present (wherever it happens to be).

Queue::Next()

Removes one item from the head of the queue and returns a pointer to it. If the queue
is empty, it returns null.

Queue::Head()

Returns a pointer to the head item of the queue, without removing it. If the queue is
empty, it returns null.

Queue::Empty()

Returns true if there are no items in the queue, false otherwise.

Queue::Length()

Returns the number of items in the queue.

5.3 Priority Queues
PriorityQueue is a variant of class Queue which maintains its contents in order of
priority. The priority of the elements is defined by a user-supplied method.

5.3.1 Synopsis
Class PriorityQueue is defined as follows:

#include <akaroa/priority_queue.H>

template <class T>
class PriorityQueue : public Queue<T> {
public:
virtual void Insert(T *item);
virtual void HigherPriority(T *item1, T *item2) = 0;

};

5.3.2 Using PriorityQueues
To use the PriorityQueue template to create a priority queue of a particular type, you have to
implement a method called HigherPriority which takes pointers to two items of that type.
The method should return true if the first one has higher priority than the second, false
otherwise.



24 CHAPTER 5. AKAROA LIBRARY ROUTINES

PriorityQueue::Insert(item)will then insert the given item in the appropri-
ate place in the queue according to its priority in relation to the items already there. All
other methods of PriorityQueue work the same as for Queue.

For example, here is a definition of a priority queue of objects of class Customer which
the user has defined as having a height member. It arranges for taller customers to have
priority over shorter ones.

class MyPrioQ : public PriorityQueue<Customer> {
public:
int HigherPriority(Customer *, Customer *);

};

int MyPrioQ::HigherPriority(Customer *c1, Customer *c2) {
return c1->height > c2->height;

}

5.4 Process Manager
The Process Manager is provided to help you implement process-oriented discrete event
simulations. It allows you to create multiple “lightweight processes”, or threads of exe-
cution, within the Unix process that is running your simulation. In this section, the term
“process” refers to a lightweight process.

The ProcessManager alsomaintains a simulation clock, and provides themeans for pro-
cesses to schedule themselves or other processes to execute at specified simulation times.

5.4.1 Synopsis
The Process Manager defines the following types and functions:

#include <akaroa/process.H>

typedef real Time;

class Process {
public:
Process(long stackSize = 1024);
void Schedule(Time delay);

protected:
virtual void LifeCycle() = 0;

};

Time CurrentTime();
Process *CurrentProcess();
void Hold(Time delay);
void Hold();
void DeleteProcesses();

5.4.2 Creating a process
Initially, there is one process executing the main program of your simulation. To create
additional processes, you need to define a subclass of class Process, and give it a LifeCycle
method. For example:



5.4. PROCESS MANAGER 25

class Customer : public Process {
protected:
void LifeCycle();

};

void Customer::LifeCycle() {
EnterStore();
WaitForServer();
if (!AskFor(aRareItem))

ComplainToManager();
LeaveStore();

}

You could then create a new Customer process with:

Customer *c = new Customer;

The newly created process is scheduled to execute at the current simulation time. When
it gains control, it will execute its LifeCycle method.

Despite its name, the LifeCycle does not automatically cycle. If the LifeCycle method
returns, the process’s thread will be terminated and the memory occupied by the Process
object deallocated (i.e. the process will delete itself).

5.4.3 Stack size
By default, a new process is allocated 1024 bytes of stack space, plus some extra to allow
for the requirements of the Process Manager. If this is not sufficient, you can specify a
larger stack when you create a process:

Customer *c = new Customer(5000);

It is important to give your processes enough stack space. Once created, a process’s
stack cannot be extended; if the process runs out of stack space, your simulation will crash.
(An exception to this is the process executing the main program, which uses the initial Unix
stack, and will therefore have its stack extended when necessary.)

5.4.4 Scheduling
A process can be scheduled to execute at a specified simulation time. Process::Schedule(delay)
will schedule the process to execute at the current simulation time plus delay; until then,
the process will be blocked.

Hold(delay) blocks the current process until the simulation clock reaches the cur-
rent time plus delay. It is equivalent to CurrentProcess() -> Schedule(delay).

Hold()with no arguments blocks the current process indefinitely. It will not run again
until some other process schedules it.

Process scheduling is non-preemptive. Once a process is running, control is never trans-
ferred to another process until the current process either calls Hold or invokes Schedule
on itself.

5.4.5 Other routines
CurrentTime()

Returns the current value of the simulation clock.



26 CHAPTER 5. AKAROA LIBRARY ROUTINES

Process *CurrentProcess()

Returns a pointer to the Process whose LifeCycle is currently executing.

void DeleteProcesses()

Deallocates all instances of class Process in existence. This is useful if you have a
terminating simulation and you want to return your system to an empty state before
starting another repetition.
A process queued for a Resource will be removed from the queue before being
deleted. However, any other pointers you have to it will be left dangling, so it is up
to you to deal with those.

5.5 Resources
Class Resource is used to represent a finite resource which comes in discrete units, and to
coordinate processes which are competing for access to the resource.

5.5.1 Synopsis
Class Resource is defined as follows:

#include <akaroa/resource.H>

class Resource {
public:
Resource(int capacity);
void Acquire(int amount);
void Release(int amount);

};

5.5.2 Methods
Resource::Resource(int capacity)

The capacity specifies how many units of the resource are initially available.

Resource::Acquire(int amount)

Allocates the specified number of units of the resource to the current process. If the
requested amount is not available, the process is blocked until sufficient units become
available. Processes waiting for units are allocated them on a first come, first served
basis.

Resource::Release(int amount)

Releases the specified number of units of the resource and make them available for
other processes.

5.6 AkSimulation: Running an Akaroa simulation from a
program

The akrun command is designed primarily for launching an Akaroa simulation manually
and visually examining the results. If you want to automate the running of one or more
simulations, one way would be to write a shell script which invokes akrun. However,
extracting the results from the textual output written by akrun can be tedious.



5.6. AKSIMULATION 27

To make it easier to automatically run an Akaroa simulation and process the results,
the class AkSimulation is provided. This class allows a C++ program to directly initiate an
Akaroa simulation. The results are returned in the form of a structure, which you can then
process as desired.

5.6.1 Synopsis
Class AkSimulation is defined as follows:

#include <akaroa/simulation.H>

class AkSimulation {

public:

// Creation and setting up
AkSimulation(char *command);
AkSimulation(int argc, char *argv[]);
void UseHosts(int numHosts);
void UseHost(char *hostName);
void SetEnvironmentFile(char *path);
void SetRandomState(AkRandomState);

// Running the simulation
int Run();

// Getting the results
int GetNumParams();
int GetResult(int paramNum, AkResult&);
AkRandomState GetRandomState();
char *ErrorMessage();

// A type used by the routines below
enum Disposition {Continue, Terminate};

protected:

// Callback routines
virtual void EngineStarted(int pid, char *host);
virtual Disposition RandomOverflow();
virtual Disposition EngineLost(int pid, char *host);
virtual Disposition EngineOutput

(int pid, char *host, char *data, size_t data_length);

};

5.6.2 Using AkSimulation
To use the AkSimulation class, you first create an instance of it, specifying the command
name and arguments to use to start the simulation engines. The AkSimulation class pro-
vides two alternative constructors for this. One takes a single string containing a program
name and arguments separated by spaces; the other takes an array of string pointers. If any
of your argument strings contain spaces, you will have to use the second form of construc-
tor, because the first one does not interpret quotes or any other special characters.



28 CHAPTER 5. AKAROA LIBRARY ROUTINES

After creating the AkSimulation, you then specify either how many hosts to use with
UseHosts, or particular hosts to use with UseHost. If you are specifying particular
hosts, you should make one UseHost call for each host you want to use.

Optionally you may use SetEnvironmentFile or SetRandomState to specify
the environment file to use or the initial state of the random number allocator.

Then you call Run, which launches the simulation and waits for it to complete. If Run
returns 0, the simulation has completed successfully. You can then call GetNumParams
to find out how many results are available, and GetResult for each parameter to get the
results themselves.

The results are returned in an AkResult structure:

struct AkResult {
long count; // Total number of observations made
long trans; // Total number of transient observations
double mean; // Estimate of mean value of parameter
double variance; // Variance of estimate of mean
double delta; // Half-width of confidence interval
double conf; // Confidence level

};

After the simulation has been run, you can use GetRandomState to get the final
state of the random number allocator. This value can be passed to SetRandomState
method of the same or another instance of AkSimulation.

The Run method may be called repeatedly to run the simulation multiple times. If this
is done, the random number state used for each run will be the one left by the previous run,
so in that case it is not necessary to use GetRandomState and SetRandomState.

If Run returns -1, the simulation did not complete successfully for some reason. You
can use ErrorMessage to obtain a string explaining the reason for failure. (This method
returns a pointer to static storage, so you should copy the string if you’re not going to use
it right away.)

The EngineStarted method is called by the system to acknowledge that a simula-
tion engine has been launched. The default implementation of this method does nothing.
If you want to take some action on receiving the acknowledgement, create a subclass of
AkSimulation and override this method.

The RandomOverflowmethod is called if exhaustion of the random number stream
is detected during the simulation. By default, this method returns the valueAkSimulation::Terminate
which causes the simulation to be terminated with an appropriate error. If you override this
method to return AkSimulation::Continue, the simulation will be continued with
the random number stream starting again from the beginning. (Note: Detection of random
overflow is not implemented for the CMRG generator (the default in Akaroa 2.6 and later).
This is because the sequence is sufficiently long to make random overflow impossible for
all practical purposes.)

The EngineLostmethod is called if contact with a simulation engine is unexpectedly
lost. The default method returns AkSimulation::Continue, which causes the sim-
ulation to be continued with the remaining engines. If you override this method to return
AkSimulation::Terminate, the simulation will be terminated with an appropriate
error.

The EngineOutput method is called whenever a simulation engine writes output to
its standard error. The default method writes the data to the standard error of the process
invoking the simulation (preceded by an identification of the host and process from which
the data came) and returns AkSimulation::Continue, which causes the simulation
to be continued. If you override this method to return AkSimulation::Terminate,
the simulation will be terminated with an appropriate error.

Here is an example which illustrates the use of the AkSimulation class.



5.6. AKSIMULATION 29

/*
* run_uni2.C - Simple example illustrating the use of the
* ========== AkSimulation class
*/

#include <stdio.h>
#include <akaroa.H>
#include <akaroa/simulation.H>

int main(int argc, char *argv[]) {
AkSimulation *sim = new AkSimulation("uni2");
sim->UseHosts(3);
if (sim->Run() == 0) {
int n = sim->GetNumParams();
for (int i = 1; i <= n; i++) {

AkResult result;
sim->GetResult(i, result);
printf("Parameter %d: Mean = %lg +/- %lg\n",

i, result.mean, result.delta);
}

}
else
printf("It didn’t work! %s\n", sim->ErrorMessage());

}



30 CHAPTER 5. AKAROA LIBRARY ROUTINES



Chapter 6

Examples

This chapter contains some examples of complete simulation engines, illustrating the use
of the core Akaroa routines and many of the library routines and classes.

6.1 An M/M/1 Queueing System
This example models a simple M/M/1 queueing system, illustrating the use of the Process
Manager and the Resource class. You will see that it is just an ordinary simulation program,
with the addition of a call to AkObservation at the point where the time spent in the
system by the customer is calculated.

/*
* mm1.C - M/M/1 Queueing System
* =====
*/

#include "akaroa.H"
#include "akaroa/distributions.H"
#include "akaroa/process.H"
#include "akaroa/resource.H"

double arrival_rate; // Rate at which customers arrive
double service_rate; // Rate at which customers are served

// There is one server, modelled here as a Resource
// with a capacity of 1 unit.

Resource server(1);

// Each customer is modelled as a process. A customer’s
// life consists of arriving, waiting for the server to become
// available, waiting to be served, and leaving.
// We calculate the time between entering and leaving,
// and hand it to Akaroa as an observation.
//
// This is not a very efficient implementation, but it serves
// to illustrate how to use Processes and Resources.

class Customer : public Process {
public:

31



32 CHAPTER 6. EXAMPLES

void LifeCycle();

};

void Customer::LifeCycle() {
Time arrival_time, time_in_system;
arrival_time = CurrentTime();
server.Acquire(1);
Hold(Exponential(1/service_rate));
server.Release(1);
time_in_system = CurrentTime() - arrival_time;
AkObservation(time_in_system);

}

// The main program. After getting the load from the command
// line and calculating the arrival and service rates,
// we enter a loop generating new customers at the arrival
// rate.

int main(int argc, char *argv[]) {
real load = atof(argv[1]);
service_rate = 10.0;
arrival_rate = load * service_rate;
for (;;) {
new Customer;
Hold(Exponential(1/arrival_rate));

}
}

6.2 A Multiprocessing Computer System
This example models a multiprocessing computer system consisting of one CPU, some
number of disks, and some number of terminals. It illustrates the use of the Process and
Resource classes, and how they can be used to model a closed system (one with no sources
or sinks).

At each terminal, a user interactively submits requests and waits for the results. Ob-
servations are made of the response times of the requests - i.e. the time between the user
making the request and the system finishing processing of the request.

Each user is modelled as a Process, and the CPU and disks are modelled as Resources.
The life cycle of a user consists of thinking for some random time and then making a
request. The request uses the CPU for a random time, then has some probability of either
using one of the disks for a random time and returning to use the CPU again, or of finishing.
The user then goes back to the think state and the life cycle repeats.

In this example, all of the random times are exponentially distributed.

/*
* multi.C - Simulation of a timesharing computer system
* =======
*/

#include "akaroa.H"
#include "akaroa/distributions.H"
#include "akaroa/process.H"



6.3. A TERMINATING SIMULATION 33

#include "akaroa/resource.H"

int num_users = 5; // Number of terminals/users
int num_disks = 1; // Number of disk drives
real mean_CPU_time = 20; // Mean burst of CPU usage
real mean_disk_time = 4; // Mean disk usage time
real mean_think_time = 100; // Mean time a user spends thinking
real use_disk_probability = 0.25; // Probability of using disk

class User : public Process {
public:

User() : Process(1024) {}
virtual void LifeCycle();

};

User **users;
Resource *cpu;
Resource **disks;

void User::LifeCycle() {
for (;;) {
Time start = CurrentTime();
cpu->Acquire(1);
Hold(Exponential(mean_CPU_time));
cpu->Release(1);
if (Uniform(0, 1) <= use_disk_probability) {

int i = UniformInt(0, num_disks - 1);
disks[i]->Acquire(1);
Hold(Exponential(mean_disk_time));
disks[i]->Release(1);

}
else {

AkObservation(CurrentTime() - start);
Hold(Exponential(mean_think_time));

}
}

}

int main(int argc, char *argv[]) {
users = new User*[num_users];
for (int i = 0; i < num_users; i++)
users[i] = new User();

cpu = new Resource(1);
disks = new Resource*[num_disks];
for (i = 0; i < num_disks; i++)
disks[i] = new Resource(1);

Hold();
}

6.3 A Terminating Simulation
This is an example of a simulation which produces independent observations. An M/M/1
queueing system is run for the first 25 customers and the mean delay of these customers is



34 CHAPTER 6. EXAMPLES

submitted to Akaroa as an observation. The simulation is repeated to generate a series of
observations, which are analysed using independent observation mode.

/*
* mm1term.C - Terminating M/M/1 Simulation
* =========
*
* Example of a simulation which produces independent
* observations. Repeatedly runs an M/M/1 queueing
* system starting from empty and idle, and observes
* the mean delay of the first 25 customers.
*/

#include <stdlib.h>
#include <iostream.h>
#include "akaroa.H"
#include "akaroa/distributions.H"
#include "akaroa/process.H"
#include "akaroa/resource.H"

int customersRequired = 25;

double arrival_rate; // Rate at which customers arrive
double service_rate; // Rate at which customers are served

Resource *server; // The server

int customersServed; // For calculating mean
real totalDelay; // delay of customers

//
// Process class modelling a customer
//

class Customer : public Process {
public:

void LifeCycle();
};

void Customer::LifeCycle() {
Time arrival_time, begin_service_time, delay;
arrival_time = CurrentTime();
server->Acquire(1);
begin_service_time = CurrentTime();
Time service_time = Exponential(1/service_rate);
Hold(service_time);
server->Release(1);
delay = begin_service_time - arrival_time;
++customersServed;
totalDelay += delay;

}

//
// Perform one repetition of the simulation.



6.3. A TERMINATING SIMULATION 35

// Loop generating new customers until the required
// number of customers have been served.
// Then calculate the mean delay, give it to Akaroa
// as an observation, and clean out the system ready
// for the next repetition.
//
// Note that we create a fresh server for each
// repetition to ensure that it starts out with
// the correct initial state.
//

void RunOnce() {
customersServed = 0;
totalDelay = 0;
server = new Resource(1);
while (customersServed < customersRequired) {
new Customer;
Hold(Exponential(1/arrival_rate));

}
real meanDelay = totalDelay / customersServed;
AkObservation(meanDelay);
DeleteProcesses();
delete server;

}

//
// The main program. After getting the load from the command
// line and calculating the arrival and service rates,
// we inform Akaroa that the observations will be independent,
// then enter a loop repeating the simulation forever.
//

int main(int argc, char *argv[]) {
real load = atof(argv[1]);
service_rate = 10.0;
arrival_rate = load * service_rate;
AkObservationType(AkIndependent);
for (;;)
RunOnce();

}



36 CHAPTER 6. EXAMPLES



Appendix A

Adding Observation Analysis
Methods to Akaroa

A.1 Introduction
Akaroa 2.7 is designed in a modular fashion which permits new methods of analysing
observations to be easily added. Two kinds of observation analysis modules can be added,
Transient Detection methods and Variance Analysis methods.

Note: The information presented here depends on the internal structure of the Akaroa
library, and may change in future versions of Akaroa.

A.1.1 Observation analysis phases
Analysis of observations in Akaroa is carried out in two phases, the transient phase and the
steady state phase.

During the transient phase, observations are passed to the selected Transient Detection
module, as determined by the TransientMethodAkaroa environment variable. The Tran-
sient Detection module discards observations until it determines that the transient phase is
over, and the simulation has reached steady state.

The steady state phase is then entered, and observations are passed to the selected Vari-
ance Analysis module, as determined by the AnalysisMethod Akaroa environment vari-
able. The Variance Analysis module decides when checkpoints should be taken, estimates
the mean and the variance of the mean, and passes the estimates on to Akaroa for further
processing.

A.2 Copying the Akaroa sources
Adding newmodules to Akaroa involves modifying some of the existing sources, so before
starting, you should make your own copy of the Akaroa source. The easiest way is to
unpack the distributed .tar file in a directory of your own. In what follows, this directory
will be referred to as $MYAK.

Note: Don’t use cp to copy the Akaroa source directory. It contains symbolic
links, which will not be preserved by cp.

You should update your PATH variable to look for the Akaroa binaries (akmaster,
akslave and akrun) in $MYAK/bin.

37



38 APPENDIX A. ADDING OBSERVATION ANALYSIS METHODS TO AKAROA

A.3 Adding a Transient Detection method
Implementing a Transient Detection method and adding it to Akaroa requires the following
steps:

1. Write a new subclass of class TransientDetectorwhich implements yourmethod.

2. Declare your method to Akaroa by including a call to the macro
DefineTransientDetectorType.

3. Add the name of yourmethod to the list of possible values for the TransientMethod
variable in the Akaroa environment. Optionally, you can also add new Akaroa envi-
ronment variables for controlling your method.

4. Add the name of your object file to the Akaroa Makefile and recompile Akaroa.

Each of these steps is described in detail below.

A.3.1 Subclassing TransientDetector
A TransientDetector performs transient detection for a single parameter. Akaroa will
create an instance of your transient detector for each parameter to be analysed.

You will need to include the following header files:

#include "transient_detector.H"
#include "environment.H"

The constructor of your TransientDetector subclass should have the following signa-
ture:

MyTransientDetector(Environment *env);

There are two alternative ways to implement a TransientDetector:

1. Override the TestObservationsmethod.

2. Override the ProcessObservationsmethod.

You should override either one or the other of these methods, not both.

Overriding TestObservations

The TestObservationsmethod has the following signature:

long TestObservations(long nobs, real obs[]);

Each time Akaroa receives an observation, the TestObservations method is called
with a buffer containing all the observations collected so far. The TestObservations
method should analyse these observations and determinewhether they encompass the entire
transient period. If so, it should return the number of transient observations to be discarded;
if not, it should return -1.

The number of transient observations returned may be less than the number of obser-
vations in the buffer. In that case, the remaining observations will be passed to the variance
analysis module before resuming simulation. It is thus possible for the transient detector to
“look ahead” in the observation stream if it wishes.



A.3. ADDING A TRANSIENT DETECTION METHOD 39

Overriding ProcessObservation

This method is provided as an alternative for transient detectors that do not need to look
ahead in the observation stream, and do not need observations to be buffered or want to
perform their own buffering.

The ProcessObservationmethod has the following signature:

enum TransientResult {stillInTransient, outOfTransient};
TransientResult ProcessObservation(real value);

The ProcessObservationmethod receives observations one at a time. As long as the
transient phase is not yet over, it should returnstillInTransient. When it determines
that the transient phase is over, it should return outOfTransient.

A.3.2 Declaring your transient detector to Akaroa
To make your transient detector known to Akaroa, you must place a call to the following
macro at the top of your source file:

DefineTransientDetectorType("name", class)

where name is the name by which your method is to be know to the user, and class is the
name of the class implementing your method. For example,

DefineTransientDetectorType("MyTransientMethod", MyTransientDetector)

A.3.3 Adding a value for the TransientMethod variable
You also have to add name to the list of valid values for the TransientMethod variable
(otherwise the user will get an error when he tries to use it). To do this, you need to edit the
file $MYAK/src/env/variables.C. Find the part which contains:

"TransientMethod", "e", "Schruben", "Schruben",
".Independent",
0,

and add the name of your method (the name string that you used in the DefineTransientDe-
tectorType call) to the list at the end, before the final zero. For example:

"TransientMethod", "e", "Schruben", "Schruben",
".Independent",
"MyTransientMethod",
0,

A.3.4 Adding your code to the Makefile
Add the name of the object file (or files) implementing your transient detector to the defi-
nition of AKANAL OBJ in $MYAK/src/Makefile.common, for example:

AKANAL_OBJ = \
$HOME/mystuff/my_transient_detector.o \
...

The pathname you use in the Makefile must either be a full pathname or relative to the
$MYAK/src directory. The source file corresponding to the .o file should end in .C so that
the Makefile will be able to find it.



40 APPENDIX A. ADDING OBSERVATION ANALYSIS METHODS TO AKAROA

A.3.5 Recompiling Akaroa
Finally, you will need to recompile the Akaraoa system, and any simulation engines which
are to use your new transient detector. See section A.5 for details.

A.4 Adding a Variance Estimation method
The job of a variance estimation method is to take a stream of observations and calculate
two things from it: (1) an estimate µ̂ of the mean value µ of the parameter; (2) an estimate
σ̂2 of the variance of µ̂.

A.4.1 Checkpoints
Although the estimation method could calculate a new estimate of µ̂ and σ̂ 2 after every
observation, to do so would be very inefficient. Therefore, the estimation method will
usually collect some number of observations before calculating a new set of estimates.

The point at which new estimates are calculated is called a checkpoint, and the spacing
between checkpoints (the number of observations collected before a checkpoint is reached)
is under the control of the estimation method. Some methods will have natural places to
use as checkpoints – in Batch Means, for instance, a checkpoint corresponds to a batch
or some number of batches. In other methods – such as Spectral Analysis – checkpoint
spacing can be arbitrary.

If your estimation method allows freedom in the spacing of checkpoints, you may wish
to base it on the value of an Akaroa environment variable so that it is under the control of
the user (see section A.6).

It is also possible for the simulation program to give hints to the estimation method as
to where checkpoints should occur, by calling AkCheckpoint during the simulation.

A.4.2 Steps to implementing an estimation method
Implementing a variance estimation method and adding it to Akaroa requires the following
steps:

1. Write a new subclass of class VarianceEstimatorwhich implements yourmethod.

2. Declare your method to Akaroa by including a call to the macro
DefineVarianceEstimatorType.

3. Add the name of your method to the list of possible values for the AnalysisMethod
variable in the Akaroa environment. Optionally, you can also add new Akaroa envi-
ronment variables for controlling your method.

4. Add the name of your object file to the Akaroa Makefile and recompile Akaroa.

Each of these steps is described in detail below.

A.4.3 Subclassing VarianceEstimator
A VarianceEstimator performs variance estimation for a single parameter. Akaroa will
create an instance of your estimator for each parameter to be analysed.

You will need to include the following header files:

#include "parameter_analyser.H"
#include "environment.H"
#include "checkpoint.H"



A.4. ADDING A VARIANCE ESTIMATIONMETHOD 41

The constructor of your VarianceEstimator subclass should have the following signa-
ture:

MyVarianceEstimator(Environment *env, long trans);

The env parameter recceives the Akaroa environment. The trans parameter receives the
number of observations that were discarded during the transient phase. (The trans param-
eter is provided for informational purposes only; the transient observations have already
been discarded by the time the variance estimator is called.)

Your estimator should implement the following three methods:

void ProcessObservation(real value)

Akaroa will call this method each time an observation for this pa-
rameter is submitted by the simulation engine.

boolean ReachedCheckpoint()

Akaroa will call this method after processing each observation, to
find out whether your estimator has reached a checkpoint (i.e. it has
collected enough observations since the last checkpoint to calculate
an estimate of the mean and variance). If your estimator determines
that it has reached a checkpoint, it should return true, otherwise
false.

boolean GetCheckpoint(Checkpoint &cp)

This method is called in two circumstances: when your ReachedCheckpoint
returns true, or when the simulation calls AkCheckpoint. If
possible, the estimator should calculate a checkpoint, fill in the
Checkpoint structure as described below, and return true. If
for some reason it is not possible to calculate a checkpoint, it should
return false.

The following fields of the Checkpoint structure should be filled
in:

cp.mean Estimate of µ
cp.variance Estimate of σ2(µ̂)

Optionally, you can set the value of cp.df. Akaroa sets this to
zero before calling GetCheckpoint; if you leave it zero, Akaroa
uses the normal distribution to calculate the confidence interval of
µ̂ from σ̂2(µ̂). If you set cp.df to a non-zero value n, Akaroa uses
a t-distribution with n degrees of freedom.

The remaining fields of the Checkpoint structure should not be
changed.

A.4.4 Declaring your variance estimator to Akaroa
To make your estimator known to Akaroa, you must place a call to the following macro at
the top of your source file:

DefineVarianceEstimatorType("name", class)



42 APPENDIX A. ADDING OBSERVATION ANALYSIS METHODS TO AKAROA

where name is the name by which your method is to be know to the user, and class is the
name of the class implementing your method. For example,

DefineVarianceEstimatorType("MyAnalysisMethod", MyVarianceEstimator)

A.4.5 Adding a value for the AnalysisMethod variable
You also have to add name to the list of valid values for the AnalysisMethod variable
(otherwise the user will get an error when he tries to use it). To do this, you need to edit the
file $MYAK/src/env/variables.C. Find the part which contains:

"AnalysisMethod", "e", "Spectral", "Spectral",
"BatchMeans",
".Independent",
...
0,

and add the name of your method (the name string that you used in the DefineVarianceEs-
timatorType call) to the list at the end, before the final zero. For example:

"AnalysisMethod", "e", "Spectral", "Spectral",
"BatchMeans",
".Independent",
...
"MyAnalysisMethod’’,
0,

A.4.6 Adding your code to the Makefile
Add the name of the object file (or files) implementing your estimator to the definition of
AKANAL OBJ in $MYAK/src/Makefile.common, for example:

AKANAL_OBJ = \
$HOME/mystuff/my_variance_estimator.o \
...

The pathname you use in the Makefile must either be a full pathname or relative to the
$MYAK/src directory. The source file corresponding to the .o file should end in .C so that
the Makefile will be able to find it.

A.5 Recompiling Akaroa
To recompile Akaroa, change directory to $MYAK/src and issue the following shell com-
mand:

make system

This will compile the Akaroa library and the programs akmaster, akslave and akrun,
and make them available in the $MYAK/lib and $MYAK/bin directories.

You will also need to recompile any simulation engines that you want to use with the
newmodules. To recompile one of the example simulations, e.g. mm1, use a command such
as

make mm1

If you compile a simulation engine of your own, make sure that you link it with your
new version of the Akaroa library (the one in $MYAK/lib).



A.6. ACCESSING THE AKAROA ENVIRONMENT 43

A.6 Accessing the Akaroa Environment
If desired, your module can use the values of Akaroa environment variables. For example,
you might want to use the value of the CPSpacingFactor variable as a basis for the
checkpoint spacing. You can also define new environment variables of your own.

A.6.1 Retrieving Akaroa environment variables
Values of Akaroa environment variables are retrieved using the Environment * pointer
passed to the constructor of a TransientDetector or VarianceEstimator. This points to an
Environment object which has the following methods:

int GetInt(char *name);
real GetReal(char *name);
char *GetString(char *name);

These retrieve the values of integer, real and string valued variables, respectively.
There is also a fourth type of variable, enumerated, whose value is one of a set of

named values (like the AnalysisMethod variable). There are two methods for retrieving
the value of an enumerated variable:

char *GetEnumString(char *name);
int GetEnumInt(char *name);

The first one returns the value as a string, and the second one returns it as an ordinal number
(starting with 0).

Here is a partial example of a variance estimator which retrieves the value of two ex-
isting Akaroa environment variables, CPSpacingFactor and CPSpacingMethod, and
stores them for later use.

class MyVarianceEstimator : public VarianceEstimator {
public:
MyVarianceEstimator(Environment *env, long trans);
...

private:
real cpsf;
int cpm;
...

};

MyVarianceEstimator::MyVarianceEstimator(Environment *env, long trans) {
cpsf = env->GetReal("CPSpacingFactor");
cpm = GetEnumInt("CPSpacingMethod"); // 0 = Linear, 1 = Geometric
...

}

A.6.2 Defining new Akaroa environment variables
To add a newAkaroa environment variable, you need to add a row to the table in $MYAK/src
/env/variables.C. The table has four columns: the name of the variable, its type, its
default value, and (for enumerated variables only) a list of all the possible values.

Here are four example table entries, defining a variable of each of the four types:

/*Name*/ /*Type*/ /*Default*/ /*Values*/
"MyInteger", "i", "42",
"MyReal", "r", "3.1415",
"MyString", "s", "strawberry",
"MyEnum", "e", "Honda", "Honda", "Suzuki", "Yamaha", 0,



44 APPENDIX A. ADDING OBSERVATION ANALYSIS METHODS TO AKAROA



Appendix B

Obsolete Facilities

This chapter describes parts of Akaroa 2 and its libraries which are obsolete. They are
provided only to support simulation programs written to run under previous versions of
Akaroa. You should not use any of the facilities described here in new simulation programs,
since they may disappear from future versions of Akaroa 2.

B.1 Event Manager
The functions of the Event Manager have been taken over by the Process Manager. You
should use either the Process Manager or the Event Manager, but not both.

The Event Manager maintains a queue of events, each of which is scheduled to occur
at a specified simulation time. When an event occurs, it executes a piece of code which
you supply. This code can perform whatever action you want, including scheduling further
events.

To use the Event Manager, you write a procedure for each event which can occur in
your simulation. Each event procedure should take one argument, which must be a pointer,
although it can point to whatever type of data is appropriate, and different event procedures
can take pointers of different types.

You start the simulation off by calling Schedule to schedule one or more events as
described below. Then you enter a loop calling NextEvent repeatedly. Each time you
call NextEvent, the earliest event in the event queue is extracted, the simulation clock is
advanced to the time for which it is scheduled, and its associated procedure is called with
the specified argument.

Typically, your action procedures will schedule further events, which will schedule
further events again, and so forth, thus keeping the simulation going. You should also call
AkSimulationOver periodically in your main loop, so that you can tell when to stop.

B.1.1 Event Manager Routines
The Event Manager defines the following types and routines.

#include <akaroa/events.H>

typedef real Time;

Values of type Time are used by the Event Manager to represent simulation times.
The unit in which simulation time is measured is up to the user’s interpretation.

template <class T>
void Schedule(void (*proc)(T *), T *argument, Time delay);

45



46 APPENDIX B. OBSOLETE FACILITIES

Schedules the procedure proc to be called with the given argument at the current
simulation time plus delay. For example,

Pentium *p = new Pentium;
Schedule(Explode, p, 42);

schedules an event to occur 42 time units from now. When the simulation clock
reaches that time, Explode will be called with p as argument (both of which the
user has presumably defined in some appropriate way).

int NextEvent()

If there are any events in the event queue, the one scheduled to occur next is removed
from the queue, its action procedure is called with the argument specified when the
event was scheduled, and true is returned. If the event queue is empty, false is re-
turned.
Typically, NextEvent will be called from the main loop of your simulation, which
will look something like this:1

while (!AkSimulationOver())
NextEvent();

Time CurrentTime()

Returns the current value of the simulation clock.

B.2 Linear Congruential Random Number Generator
This section describes the linear congruential random number generator (LCG) that was
used in versions of Akaroa2 prior to 2.6. In version 2.6 and later, the generator defaults to
the Combined Multiple Recursive generator (CMRG). The LCG can be selected by setting
the Akaroa environment variable RandomGenerator to LCG.

The LCG uses a series of multiplying coefficients to generate a sequence of random
numbers made up of subsequences of length 2 31 − 2, one subsequence for each multi-
plier. Currently 50 multipliers are available, for a total sequence length of 107,374,182,300
numbers.

These multipliers are taken from a list of optimal multipliers published by Fishman and
Moore 2, and they have been subjected to extensive statistical testing by those authors. For
more information, including a list of the multipliers, see the on-line manual entry AkRan-
dom LCG(3).

1This example assumes the simulation to be designed so that the event queue can never become empty. In
a steady-state simulation, this will usually be the case. If there is a chance that the event queue could become
empty, you should test the return value from NextEvent, and if it is false, do something that will schedule one or
more events.

2George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random
number generators with modulus 231 − 1. SIAM J. Sci. Stat. Comput. Vol. 7, No. 1, January 1986, pp. 24-44



Bibliography

[1] K. Pawlikowski and V. Yau. “On Automatic Partitioning, Runtime Control and
Output Analysis Methodology for Massively Parallel Simulations”. Proc. European
Simulation Symp. ESS ’92 (Dresden, Germany, Nov. 1992), So. Computer Simula-
tion, 1992, pp. 135-139

[2] V. Yau and K. Pawlikowski. “AKAROA: a Package for Automatic Generation and
Process Control of Parallel Stochastic Simulation”. Proc. of the 16th Australian
Computer Science Conference, ACSC ’93, Brisbane, Australia, Feb. 1993, vol. A,
pp. 71-82

[3] K. Pawlikowski, V.Yau and D.McNickle. “Distributed Stochastic Discrete-Event
Simulation in Parallel Times Streams”. Proc. Winter Simulation Conf. WSC’94,
IEEE Press, 1994, pp. 723-730

[4] G.Ewing, D.McNickle and K.Pawlikowski. “Credibility of the Final Results from
Quantitative Stochastic Simulation”.Proc. European Simulation Congress, ESC’95,
Vienna (Austria), Sept.1995, Elsevier, 1995, pp. 189-194

[5] D.McNickle, K.Pawlikowski and G.Ewing. “Experimental Evaluation of Confidence
Interval Procedures in Sequential Steady-State Simulation”. Proc.Winter Simulation
Conference, WSC’96, San Diego, Dec. 1996, pp. 382-389

[6] G.Ewing, D.McNickle and K.Pawlikowski. “Multiple Replications in Parallel: Dis-
tributed Generation of Data for Speeding Up Quantitative Stochastic Simulation”.
Proc. of IMACS’97 (15th Congress of Int. Association for Mathematics and Com-
puters in Simulation, Berlin, Germany, August 1997), Wissenschaft und Technik
Verlag, 1997, pp. 397-402

[7] K.Pawlikowski, G.Ewing and D.McNickle. “Coverage of Confidence Intervals in
Sequential Steady-State Simulation”. J. Simulation Practice and Theory, vol. 6, no.
3, 1998, pp. 255-267

[8] K.Pawlikowski, G.Ewing and D.McNickle. “Performance Evaluation of Industrial
Processes in Computer Network Environments”. Proc. ECEC’98 (1998 European
Conference on Concurrent Engineering), Erlangen, Germany, April 1998. Int. Soci-
ety for Computer Simulation, 1998, pp. 160-164

[9] K. Pawlikowski. “Steady-state simulation of queueing processes: Survey of prob-
lems and solutions”, ACM Computing Surveys, June 1990, pp. 123-170

[10] J.-S. R. Lee, K. Pawlikowski and D. McNickle. “Do Not Trust Too Short Sequen-
tial Simulation”. Proc. SCSC’99 (Summer Computer Simulation Conference), San
Diego, July 1999. Int. Society for Computer Simulation, 1999, pp. 97-102

47


